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1 Introduction 

Quantum mechanics has extended the concept of interference from classical waves to transition 
amplitudes between simultaneously possible processes. Well-known manifestations of this type 

of interference include, e.g., the observation of single particle interferometry which is destroyed 

by any sort of which-path information. 

The phenomenon of coherent population trapping (CPT), characterized by a sharp decrease in 

absorption under resonant excitation of a three-level system by a bichromatic light field and 

first observed about 20 years ago, results from a combination of such interference processes 

between transition amplitudes and the concept of atomic coherence. In a resonantly excited 
two-level atom atomic coherence appears as the in-phase and quadrature components of the 
induced atomic dipole moment, which naturally involves both atomic levels. In a three-level 

atom with two ground states resonantly coupled to a common excited state by a bichromatic 

light field, coherences are induced similarly on both transitions. This, in turn, leads to the 

creation of coherence between the two ground states formerly not coupled to each other. Then 
an explanation of the CPT phenomenon is given by a description of the atom with the help of 
so-called coupled and non-coupled states which both consist of a coherent superposition of the 

two ground states. While destructive interference leads to a vanishing transition amplitude from 

the uncoupled to the excited state, atomic coherence is needed for this state to be stable so that 

atomic population can be accumulated over certain time intervals. The time evolution of the 

atomic system is such that it is always out of phase with the driving light fields. Thus atomic 

population is lost for absorption and fluorescence processes, the atom remains dark despite 

resonant illumination. Another approach towards coherent population trapping has been given, 
where scattering processes between the two ground states were considered [CoH92]. In this 

picture destructive interference between various Raman transition amplitudes again leads to a 
decrease in excited state population on Raman resonance. 

The net effect of reduced absorption and fluorescence is well visible for a macroscopic ensem­
ble of atoms, e.g., in a thermal vapour. In contrast to conventional 'bright' resonances, where 

steepest dispersion is always accompanied by maximum absorption, coherent population trap­
ping combines an ultrahigh non-linear index of refraction [ScH95] with vanishing absorption. 

This is, of course, advantageous whenever a large resonant transmission signal is required. For 

instance, it has been shown possible to actually observe the propagation dynamics of light pulses 

travelling through an otherwise opaque medium at an astonishingly slow speed of only 10- 7 . C 

[KAS95, HAU99, KAS99]. 

But coherent population trapping is far from merely being an interesting phenomenon and several 

applications are currently being developed. For instance, laser cooling below the recoil limit 
was achieved with the help of a process called 'velocity-selective coherent population trapping' 
(VSCPT) [AsP88]. In a suitable experimental configuration atoms with low enough velocity are 
accumulated in a non-coupled state that depends both on internal atomic degrees of freedom and 
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translational momentum, thus salvaging the atom from further heating by photon scattering. A 

slightly different atomic level configuration has led to the prediction and observation of lasing 

without population inversion [ZIB95 , LUK96] which is discussed as a method to construct short 

wavelength lasers. More possibilities have been discussed and demonstrated, as reviewed by 

ARIMONDO [ARl96A]. 

A very promising application arises from calculations that compare the quantum noise sensitivity 
limit of a conventional optical pumping magnetometer (OPM) with that of a CPT-based device 

[Scu92, FLE94]. It was predicted for a special configuration that the ultimate sensitivity of 

the latter could by far exceed that of an OPM and even the best devices presently available, 

so-called SQUIDs (superconducting quantum interference device). Even possible applications 
with respect to the search for time reversal violation in atoms have been proposed [FLE95]. 

The work of this thesis is closely connected with the concept of an experimental implementation 

of such a high sensitivity magnetometer. Because recent advances in semiconductor laser tech­
nology have opened up new possibilities to construct a very compact and robust device it is also 
hoped to find a wide range of more practical applications, e.g., in medicine. Since detailed un­

derstanding of many details and control of systematic effects are essential for reliable operation 

of such a magnetometer the major focus of this thesis lies on a detailed characterization of CPT 

resonances in thermal cesium vapour. For practical reasons (atomic level configuration, avail­

ability of diode lasers, high enough vapour pressure at room temperature etc.) this is currently 

the medium of choice but an extension to rubidium is planned. 

The first two chapters will give an introduction into the theoretical models developed in order 
to understand the CPT resonance dependence on a multitude of external parameters for the 

special experimental configurations used. 

Chapter three describes the two different experimental configurations. Whereas the initial set­

up was characterized by the versatility needed for many systematic investigations of CPT res­

onances, the new set-up, which is based on a novel type diode laser, already constitutes a step 
towards an extremely simple and robust device as it is needed for practical applications outside 

the laboratory environment. 

In chapter four which occupies major parts of this thesis a wide range of systematic investigations 

is reported and compared with the theoretical models of the first chapters. This also includes 

the search for possible optimization of experimental parameters. For instance, the use of buffer 

gas techniques facilitated the reduction of the CPT linewidth observed tb below 50 Hz. 

The contents of the last chapter consists of two proof-of-principle experiments for the sensitive 
detection of small magnetic fields and the determination of the g-factor ratio. Although the set­
up was far from being optimized, oscillating fields in the kHz range with a flux density amplitude 
of only several pT could already be detected. 
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2 Coherent Population Trapping (CPT) 

2.1 Coherent population trapping in a A-system 

The interaction of an atomic three-level system in A-configuration with a near-resonant bichro­
matic light field exhibits the intriguing quantum mechanical phenomenon of coherent population 

trapping (ePT). As indicated by the name, under suitable resonance conditions coherent inter­

action with the two light fields has the atom trapped in a particular ground state superposition 

that is not coupled to the excited state any more due to transition amplitude interference. Hence, 
resonant excitation and fluorescence are suppressed dramatically. To the observer this process 
appears as a 'dark resonance' with a narrow linewidth determined in principle by ground state 

properties. First experimental evidence of this effect goes back to 1976 [ALZ76]. 

Efficient preparation of this dark state requires a suitable level configuration which is depicted 

in fig. 2.1. Two long-lived ground states 11) and 12) are coupled to a common excited state 13) 
by a bichromatic light field with frequency components Wl, W2, where each frequency component 

is assumed to interact with one of the transitions only. 

energy 1"11 + 
----------- I 3) 

----------........ t- I 2) 

Figure 2.1: Level configuration for the observation of ePT resonances. The notation introduced 
here will be used throughout the thesis. 

Optical pumping is the most obvious process to occur in such a system: in the presence of only 
one laser field depopulation pumping transfers atomic population into the respective uncoupled 
ground state where it can no longer absorb the laser light . Hence, after a time determined by the 
ratio of the excitation to spontaneous decay rate the medium appears dark. The presence of the 
second laser field, however, again leads to strong absorption from the formerly uncoupled state. 
Thus increased absorption over a frequency range roughly corresponding to the homogeneous 
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linewidth of the excited state is expected for a resonant bichromatic field in such a A-system. 

In addition to this effect the experiment also shows a dramatic decrease in absorption over a 

normally much narrower frequency range: coherent population trapping occurs if the difference 

frequency of the two light fields matches the ground state splitting, even if both light fields 
alone resonantly interact with their respective levels. The following paragraphs will explain this 

behaviour in more detail and present some theoretical considerations which will be made use of 

in later chapters. 

The system under investigation includes the atomic levels denoted as in fig. 2.1 and the light 

field E = El COS(W1t + <PI) + E2 COS(W2t + <P2) which will always be treated purely classically. As 
usual the Rabi frequencies 91,92 characterizing interaction strengths are defined as 

(2.1 ) 

(2.2) 

where d3i = -e (31 f li), i = 1,2, denotes the matrix elements of the electric dipole operator 

d. Polarization dependence will be discussed in a later chapter (see 3.3) so that in this section 
vector properties of d will be ignored and all Rabi frequencies are assumed real. 

In the semiclassical approach the Hamiltonian describing the interaction of the atom with the 

bichromatic light field (in rotating wave and electric dipole approximation) reads: 

H = Ho + Hint 

= 2.:= tiJ.2i li) (il + n~l e-iwlt-i'Pl 13) (11 + n~2 e-iw2t-i'P2 13) (21 +h.c. (2.3) 

Instead of the bare ground states 11) and 12) it is instructive to consider the so-called coupled 

and non-coupled states IC) and INC) defined as: 

INC) = _1_(92e-irJlt 11) _91e-irJ2tei('P2-'Pl) 12)) 
geff 

IC) = _1_(91e-in1 t 11) +92e-irJ2tei('P2-'Pl) 12)). 
geff 

(2.4) 

(2.5) 

IC),INC) are orthogonal to each other and {IC), INC), 13)} is a basis for the system under 
investigation. On Raman resonance, i.e., if W2 - W1 = [21 - [22, INC) is a solution of the 

Schrodinger equation in a/at I'I/J) = H I'I/J). Furthermore, one easily shows that, for <PI = <P2, 

(31 Hint INC) = 0 whereas (31 Hint IC) = ngeff e-i(rJ l+wI)t-2i 'Pl 2 . (2.6) 

An atom finding itself in the non-coupled (or 'dark') state INC) is trapped and cannot leave 
the state via the interaction with the light fields since the transition amplitude to the excited 
state vanishes. But in order for INC) to remain 'dark', coherence properties of the light fields 

are crucial. If <PI, <P2 fluctuate in time the atom in state IN C) at time t = to will not follow the 
time development of INC) but also get an admixture of the orthogonal state IC), since INC) 
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and IC) are mainly distinguished by a 1800 relative phase shift between the two light fields. But 

as soon as an admixture of IC) , which itself is not an eigenstate of H, comes into play the atom 

again takes part in absorption-emission cycles and thus leaves the dark state. However, in this 

picture the atom will actually never get into the dark state since stimulated emission into that 

state is not possible either. 

2.2 Semiclassical density matrix approach 

In order to find a more adequate approach towards the ePT phenomenon one has to include 

spontaneous emission into the model because it is the essential process for coherent dark state 
preparation. In the semiclassical approach this is done with the help of the density matrix 
formalism where spontaneous emission and other relaxation processes are included phenomeno­

logically via a relaxation operator R. Then the time development of the density operator 

P = I:i,j aij li) (j I is given by the Liouville equation: 

. ~ a A [H A] RA A 
2/£ at P = ,p + p. (2.7) 

Diagonal elements Pii of the density matrix correspond to the populations of the i-th level 

whereas off-diagonal elements Pij denote atomic coherences. 

From a solution of the density matrix equations the expectation values of an operator ° can be 

calculated via the relation 

(1jJ1 ° 11jJ) = Tr(pO) . (2.8) 

Using the Hamiltonian given in eq. (2.3) and introducing the following relaxation rates and 

notations: 

OL : optical detuning of the first laser, OL = Wl - W31 

OR: Raman detuning, OR = W2 - Wl - .6.hfs 

')'1, ')'2 : 

rI, r 2 : 
')'12 : 

r 12 : 

optical population decay rates, 

optical dephasing rates, 

ground state population decay rate, 

ground state dephasing rate , (2.9) 
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the density matrix equations result as : 

8 
8t Pll 
8 
8t P22 
8 
8t P33 

%t Re(P31) 

%t 1m(P3d 

%t Re(P32) 

%t 1m(P32) 

%t Re(PI2) 

%t 1m(P12) 

= 11P33 + 91Im(P3d + 112 (P22 - Pll) 

= 12P33 + 92Im(P32) -/12(p22 - Pll) 

= -bl + 12)P33 - 91Im(P3d - 92Im(P32) 

( 92 
= -fIRe P31) - hlm(P31) - 2 Im(PI2) 

() ( 91 92 
= -fIlm P31 + hRe P3d + 2(P33 - Pll) - 2 Re(P12) 

91 = -f2Re(P32) - (h + 6R)Im(P32) + 2 Im(P12) 

( ~ ~ = -f2Im P32) + (6L + 6R)Re(P32) + 2(P33 - P22) - 2 Re(PI2) 

= -f12Re(PI2) - 6Rlm(PI2) + ~1 Im(P32) + 9;Im(p3d 

= -fI2Im(pI2) + 6RRe(PI2) - ~IRe(p32) + 9;Re(P31). (2.10) 

All coherences Pij are viewed in a rotating frame, i.e., a unitary transformation has eliminated 

explicit time dependence from the system of equations: 

P31 = ei(Wlt+'Pl) P31 

P32 = ei(W2 t+'P2) P32 

P _ ei((w2-Wl)t+'P2-'PIlp~ 12 - 12 . (2.11) 

As none of the experiments to be described in this thesis was concerned with the actual time 

development of any quantum mechanical observable it is sufficient here to find steady state 

solutions for the density matrix equations. This can be done analytically without any further 

approximations. From eqs. (2.10) the density matrix elements Re(P32), Im(P32) that are relevant 
for a comparison with the experimentally recorded transmission signal can be calculated as 

(2.12) 

(2.13) 

with: 

N =(A + B6i)6'h + (C + D6i)h6k + (E + F6i + G6i)6k + (H + J6i)6L6R 
2 4 + K + Lo L + MOL· (2.14) 

The coefficients depend on decay rates and Rabi frequencies and are given explicitly in appendix 

B. Im(P32), Re(P32) describe the absorptive and dispersive properties of the system, respectively. 
An important point about these analytical formulae is that no further assumptions concerning 
Rabi frequencies and decay rates were made. Other authors reporting similar formulae have 
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always restricted themselves to either more symmetric systems (equal decay rates and Rabi 
frequencies) or the strong pump-weak probe situation ([ORR79], [KEL94], also see the review 

article by ARIMONDO [ARI96AJ). But in order to realistically model the experimental situation 

(see chapter 3) it is essential to consider the asymmetric situation for arbitrary Rabi frequencies. 

Before proceeding to the derivation of experimentally observable quantities from eqs. (2.12), 

(2.13) some interesting features of ePT resonances can already be discussed for the bare formulae 

for P32. Figs. 2.2 and 2.3 illustrate calculations of P32 for two typical experimental situations, 
i.e. , for both high and low intensity and ground state decay rates. 
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Figure 2.2: Absorptive and dispersive dark resonance line shapes calculatedfmm eqs. (2.12) , (2.13) 
fOT vaT"io'us optical detunings 6 L and with the following pammeters: 1'1 = 4 MHz, 
1'12 = r 12 = 10kHz, 1'2 = t'Yl, f1 = f2 = ~b1 + 1'2) = : ~'YO, g1 = t'Y1, g2 = 1161'1' 
For these mther high Rabi frequencies saturation broadening of the dark resonance 
allows to plot the dark resonance together with the optical resonance. Whereas the 
optical resonance directly shifts with 6L the dark resonance shift is a m'uch TrWT'e 
subtle function of 6 L. 
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Figure 2.3: Absorptive and dispersive dark resonance line shapes calculatedfram eqs. (2.12) , (2. 13) 
for the same optical detunings and decay rates as in fig. 2.2 but with different param­

eters 1'12 = f12 = 20Hz, gl = 40100 1'1 , g2 = 401001'2 . Since in this case the optical 
resonance is much braader than the dark resonance only the latter is plotted. 

For zero optical detuning OL = 0 both the broad optical resonance and the narrow dark resonance 

are centered at 6R = 0 and exhibit simple Lorentzian line shapes. With 6L different from zero the 

dark resonance gradually shifts to 6R =f. 0, gets asymmetric, and its overall amplitude decreases. 
For larger detunings h the absorption dip becomes accompanied by a lateral absorption peak. 
This behaviour has also been observed experimentally [ALz76] . A quantitative description of 
all these effects depends in a rather complicated manner on Rabi frequencies and decay rates. 

Although the experimental situation is more complicated than the case of an ideal 3-level atom 
at rest similar line shifts and asymmetries can actually be observed (see chapters 5.2, 5.4) and 
therefore it is worthwhile to investigate these asymmetries in more detail. In an experiment per­

formed in thermal cesium vapour t he Doppler shift due to the Maxwellian velocity distribution 

has the atoms experience different values of h. But since the contrast of the dark resonance 
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decreases for increasing 6L the main contribution towards the final signal stems from velocity 

classes with small 6L. Hence it appears reasonable to consider a Taylor expansion of P32 with 

respect to h. Partial fraction decomposition of the first-order Taylor expansion (which is a good 

approximation as long as h « ,0, with ,0 = ,1 + ,2) allows to separate contributions towards 

the line shape of the optical resonance from those of the dark resonance, where the latter are 

described by 

(2.15) 

(2.16) 

In principle, this decomposition is only of interest because it will be used for fitting procedures 

later on (see chapter 5.2), therefore the coefficients Ai, Di are not listed explicitly. The coefficient 

No relevant for the discussion of saturation broadening reads 

E 1 J 2 No=--- E -4KA 
2A 2A ' 

(2.17) 

with coefficients A, E, K given in appendix B. Similar terms describe the optical resonance but 

are of no interest here. 

In this approximation the dark resonance line shapes as a function of 6R are given by the 

superposition of three different curves: absorptive (AI, D4 ) and dispersive Lorentzians (Dl' D2 , 

A2 ) and the derivative of an absorptive Lorentzian (D3, A3). In the absence of Doppler shifts all 

contributions have the same linewidth and position whereas their superposition curve appears 

shifted. Fig. 2.4 illustrates this decomposition of an asymmetric dark resonance line shape into 

the three contributions: (1) absorptive Lorentzian, (2) dispersive Lorentzian, (3) derivative of an 

absorptive Lorentzian, for both the absorptive and the dispersive parts, where the parameters 

are the same as in fig. 2.3(b). 

In the approximation of an atom at rest with h = 0 the dark resonance line shape is simply 

given by the Lorentzian of the first term of eqs. (2.15), (2.16). Hence in this case the dark 

resonance linewidth ,CPT can be inferred as 

,CPT = 2~. (2.18) 

For further simplification one considers the case of a symmetric system with gl = g2 =: g, fl = 

f2 =: f, ,1 = ,2 = 2f and ,12 = k· f 12 . The introduction of the parameter k pays attention to 

the fact that relaxation between the two hyperfine-split ground states is usually not dominated 
by radiative decay, hence ,12 = f12/2 has not necessarily to be valid. For low intensities, i.e., 

small g, ,CPT can be replaced by its second-order Taylor expansion: 

1 ( 1) 2 ,CPT = 2f12 + 2f 1 + 1 _ ~ 9 (2.19) 
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Figure 2.4: Dark resonance line shape as a superposition of the three first-order Taylor expansion 
contributions: (a) Im(P32), (b) Re(P32) . Dotted curves {1}: absorptive Lorentzians, 
dashed curves (2): dispersive Lorentzians, dashed curves (3): derivatives of absorptive 
Lorentzians. Parameters used are the same as in fig. 2.3(b}. Note that forIm(p32) the 
dispersion and absorption derivative contributions always show opposite sign. For this 
set of parameters the absorption derivative part only gives a negligible contribution to 
Re(P32). 

which is already independent of k. Finally, in the approximation of f12 « f one gets 

g2 
,CPT = 2f 12 + r . (2.20) 

This is exactly the result given in [ARI94], [ARI96AJ without any details on derivation or validity 

limits. Under many experimental conditions the observed power broadening behaviour is in fact 
linear, thus at least qualitatively agreeing with eq. (2.20) , despite the radical approximations 

necessary to arrive at this formula. 

From the calculated line shapes for various optical detunings 6 L one can furthermore numerically 
determine the linewidth, amplitude, and position of the dark resonance as a function of 6L , where 
'position' shall always refer to the minimum of the absorption line. This was done using the 
same sets of parameters as in figs. 2.2 and 2.3, and the resulting curves are shown in fig. 2.5. 

The curves show either axial symmetry (fig. 2.5(1) and (2)) or point symmetry (fig. 2.5(3)). 
Both the linewidth and line strength dependence on h corresponds to an absorptive Lorentzian 
curve. The corresponding widths roughly equal the excited state linewidth, although the FWHM 

of fig. 2.5(1) appears to be slightly broader. Comparison of the situations (a) and (b) yields 
that these widths hardly depend on intensity. The fact that the ePT linewidth for the set of 
parameters (a) appears to increase with 16LI can be considered as an artifact due to the definition 

of the linewidth. 

This CPT linewidth was always determined as the difference between the two frequencies for 
which the 'dark line ' reached half its amplitude, which in the case of an almost dispersive 
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Figure 2.5: Dark resonance dependence on the optical detuning (h: 
(1) FWHM, (2) amplitude, where the amplitude of curve (a) was enlarged by a factor 
of 2· 105 , (3) position, where the curve (a) was enlarged by a factor of 500, with: 
(a) the same set of parameters as in fig · 2.3: 1'12 = f12 = 20 Hz, 91 = 1 kHz, 92 = 
0.25 kHz; 
(b) the same set of parameters as in fig· 2.2: 1'12 = f12 = 10 kHz, 91 = 1 MHz, 
92 = 0.25 MHz. 

11 

line shape is not a very reasonable approach. The CPT position crit ically depends on Rabi 

frequencies and decay rates . In t he particularly interesting parameter range of small h the shift 

can even change sign and slope for altered parameters . 

For a quantitative comparison with the experiment one has to take into account several addit ional 

aspects which will be discussed in the following chapter. 
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3 Theory of ePT resonances in thermal cesium vapour 

In the preceding chapter coherent population trapping in a simple three-level A-system was 

discussed. But the situation encountered in an experiment performed in thermal cesium vapour 

is by far more complicated. Differences arise from both the complex internal level structure of 

the cesium atom and from the thermal motion of the atoms. Accordingly, this chapter deals 

with a suitable adaptation of the simple three-level model to realistic experimental conditions. 

The main concern of all theory presented here is to gain some physical insight into the observed 

phenomena and not to provide purely numerical solutions for a multilevel system. In chapter 5 

quantitative comparison with the experiments will be sought for all the results developed here, 

in order to test the validity range of the simple models. 

3.1 ePT resonances in thermal cesium vapour 

All the experiments to be described in chapter 4 were performed on the cesium D2 transition at 

852 nm wavelength, the level configuration of which is depicted in fig. 3.1. 

energy 
Zeeman shift for mF = 1 

in kHzIIlT 

T 

+5.60 

251.4 MHz 

+3.73 
201.5 MHz 

6P3/2' F '= 4 

6P3/2, F '= 3 

6P3/2, F' = 2 

+0.00558 
151.3MHz 

_ 352 THz 

-~ (852 nm) 

J 9.19GHz 

681/2, F = 3 

-9.34 

+3.51 

-3.51 

Figure 3.1: Level configuration of the cesium D2 line, including linear Zeeman shift rates. 

Atomic level structure Even at zero magnetic field the situation is more complicated than in 
the simple three-level A-system. The two hyperfine-split ground states 681/ 2 , F = 3,4 tan form 
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a A-system with both the excited 6P1/ 2 , F' = 3 and F' = 4 levels, whereas the F' = 2,5 levels 

cannot simultaneously couple to both ground states due to electric dipole selection rules. It has 

been demonstrated theoretically as well as experimentally that the presence of additional atomic 

levels not involved in coherent dark state preparation considerably influences the dark resonance 

linewidth and the maximum transparency reached [REN97]. Further reduction of the dark reso­

nance contrast due to background absorption can be expected for the experiment described here 

because the excited state hyperfine splitting is smaller than the thermal Doppler width. Either 

using a different level configuration such as the Dl line which has the advantages of considerably 
larger hyperfine splittings and excited state components F' = 3, 4 only, or performing an atomic 
beam experiment with negligible Doppler width one could greatly increase the percentage of the 

overall transparency observed. In fact , a 90 % reduction of fluorescence intensity in the centre 

of the dark resonance has been demonstrated in an atomic beam experiment [KOR97]. 

Application of a magnetic field destroys the Zeeman degeneracy in all levels. Then the system 
under investigation gets even more complicated in that the number of atomic levels involved is 

increased from 6 to 48. The treatment of such a multilevel system will occupy major parts of 

this chapter. 

Density matrix elements For a quantitative comparison with the experiments described in 

chapter 4 one has to calculate the transmission signal of a bichromatic field behind an optically 

thin medium of length l. 

The macroscopic polarization P is given by P = N(d) , where N is the number density of 

atoms and (d) the average induced atomic dipole moment which can be calculated according to 

eq. (2.8): 

(d) = Tr(pd) 

= P31d31 + P32d32 + c.c. (3.1) 

On the other hand, for each optical frequency Wj, the polarization is related to the complex 

non-linear atomic susceptibility X(Wj) = X'(Wj) + iX"(wj) via P(w) = EOXE. Accordingly, the 
real and imaginary parts of X can be calculated as 

x'(Wj) = E;j d3j Re(P3j) 

X"(Wj) = ~d:3jlm(p3j) , 
EoEj 

j = 1,2, 

and the index of refraction n = n' + i nil can be inferred via n' - 1 ~ ~ X' and nil ~ ~ X". 

(3.2) 

(3.3) 

For an optically thin vapour the transmission signal of the bichromatic light field is determined 
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from the indices of refraction nj = nj + i n'j at the two optical transitions j ~ 3: 

with 

E = 2:= Ejei(nj kjl-wjt) + C.C. 

j=1 ,2 

= 2:= Eje-iWjte-Oj-i</Jj + C.C. 

j=1,2 

::::; 2:= Ej e-iWjt (l - 6j - icPj) + C.C. 

j=1,2 

6j = kjl n'j 

cPj = -kjZ nj. 

(3.4) 

(3.5) 

(3.6) 

Due to the non-linearity of the interaction process each nj depends on the interaction with both 

light fields. As it will be shown in chapter 5.2.1, the use of frequency modulation techniques 

allows to determine both 6j and cPj from the signal recorded with a single photo diode behind 

the medium. 

Doppler distribution So far , the calculation has been valid for an atom at rest or with 
purely transverse velocity only. As all the experiments described in this thesis were carried out 
in thermal atomic vapour it is necessary to take the atomic velocity distribution into account . In 

the rest frame of an atom travelling with velocity v the laser frequencies appear Doppler-shifted 

according to 

Wj f-t Wj - k~ . v, j = 1, 2 , 
v 

h f-t 6L - W1-
C 

v 
6R f-t 6R - (W2 - W1)-, 

c 

hence (3.7) 

(3.8) 

(3.9) 

where v should always refer to the velocity component along k only. Since dark resonance prepa­

ration is essentially a two-photon process , for copropagating laser beams Doppler broadening of 
the dark resonance is expected on the scale of the laser difference frequency at 9.2 GHz, whereas 

the optical transition directly suffers from the Doppler broadening at the optical frequencies. 

As usual, Doppler shifts were taken into account in that the function of interest is integrated 

over the Maxwellian Doppler profile f D (v) with the thermal velocity distribution of the atoms 

included via 

(3 .10) 

and similarly for n'. As the contrast of the dark resonance decreases with increasing optical 
detuning 6 L the Doppler integration tends to wash out line shifts and asymmetries since the 

main contributions arise from atoms with h ::::; O. However, residual shifts and line shape 

asymmetries can readily be detected in the experiments. 
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Atomic trajectories In principle, another aspect to bear in mind are atomic trajectories. 

Atoms travelling through the beam experience different intensities over the Gaussian beam 

profile. They might enter the interaction region at a certain time tl, then travel inside the 

beam and finally leave at some time t2. Minute modeling of this behaviour would include 
time dependent solutions of eq. (2.10) integrated over all possible atomic trajectories. The 
situation is slightly less complicated for atomic beam experiments where time dependence can be 

studied from the fluorescence emitted along the beam path [KOR97]. However, in all theoretical 

considerations presented here a simpler view was adopted in that a rectangular beam profile 

with an effective diameter d was assumed. d was determined such that both the maximum 
intensity and the total power were the same for the Gaussian and the rectangular beam profile. 

No attention was paid to atomic trajectories or non-stationary contributions of the density 

matrix, either. Although for typical beam diameters of d = 0.7 cm and thermal velocities 

the estimated average interaction time of Tint ~ 35 MS is much longer than the natural lifetime 
T ~ 30 ns of the excited state, this simplification does not necessarily yield a complete description 
of the phenomena observed. For instance, in a configuration where time-of-flight effects are 

not negligible, i.e., small laser beam diameter and low intensity, it is not obvious, to what 

extent stationary solutions are still adequate. In fact, THOMAS et al. [TH080] predicted a 

characteristic change in ePT line shape in the limit where the dark resonance linewidth is 

completely dominated by time-of-flight broadening. For some extreme choice of experimental 
parameters this effect could actually be observed in the experiments presented in chapter 5.2.2. 
But for all the other experimental investigations the conditions were such that time-of-flight 

effects could well be neglected. Finally, no attention was paid to propagation dynamics along 
the laser beam path through the cell. Although propagation effects under the influence of 

coherent population trapping can exhibit a number of other phenomena as discussed, e.g., in 

[G Ro94], those were neglected here because of considerably lower optical densities. 

Buffer gas For low intensity and small laser beam diameter time-of-flight broadening gives 
a large contribution towards the ePT linewidth. In order to reduce this influence a number of 

well-established techniques might be used that increase the effective interaction time between the 

atom and the light fields. The trivial method would consist in simply increasing the laser beam 

diameter which is of course not very handy for improvements of several orders of magnitude 
and would require rather high laser power to maintain intensity. Optical Ramsey excitation 

in an atomic beam is a well-known technique to overcome these difficulties, and linewidths of 
1.3 kHz could be observed in a ePT experiment with 30 cm separation between the Ramsey 

zones [TH082]. 

But the observation of extremely small linewidths is by no means restricted to atomic beam 
experiments. In a gas cell of dilute cesium vapour depolarization of the atoms is mainly caused 
by wall collisions. Thus in optical pumping experiments various types of special wall coatings 

have been used for many years [HAP72]. The coatings usually consist of highly unpolarizable 

organic materials such as paraffin or polysilanes [SwE88] and the dominant effect is a reduction 
of the average dwell time of the atoms on the wall. In an uncoated cell the atoms do not directly 



16 3. THEORY OF CPT RESONANCES IN THERMAL CESIUM VAPOUR 

bounce off the walls but stick to the wall for time intervals during which polarization dependent 

interaction with the wall takes place. Hence a reduction of the average sticking time brings 

about a tremendous increase in the average number of wall collisions possible before the ground 
state coherence of the atom is destroyed. If the cell is fully illuminated by the laser beams 
this technique reduces time-of-flight broadening. For the experiments of this thesis a buffer gas 

technique was chosen, and adding several mbars of an inert buffer gas (here: neon) to the cesium 
vapour has two favourable effects: 

First of all it efficiently reduces time-of-flight broadening because the free motion of cesium 

atoms through the interaction region is impeded by frequent collisions with buffer gas atoms. 

More details will be given in chapter 5.3, but the important points to note here are the following: 

For typical buffer gas pressures of several tens of mbars ground state relaxation due to colli­
sional cesium-neon interaction is still negligible. In contrast, strong broadening of the optical 

transitions is present even for buffer gas pressures as low as a few mbars. Experimentally, for 

the cesium-neon combination linewidths !broadening and shifts !shift for the D2 transitions were 
determined as 

MHz 
!broadening ~ +8.6 -b- . PNe [mbar] (FWHM) 

m ar 
MHz 

!shift ~ -3.5 -b- . PNe [mbarl 
m ar 

(3.11) 

(see [ALL82]). Hence for typical neon pressures the linewidth of the optical transition is of the 

same order of magnitude as both the excited state hyperfine splitting and the Doppler width. 

This will have important consequences for the multilevel model to be developed. 

The second point about the buffer gas influence has to do with Doppler broadening directly. The 
Doppler effect at the laser difference frequency of 9.2 GHz still restricts the minimum linewidth 
obtainable in thermal vapour even in the limit of extremely large beam diameters when time­

of-flight broadening is negligible .. Whereas a simple estimate of the Doppler width at a 9.2 GHz 

resonance frequency yielded about 9.9 kHz for cesium atoms at room temperature [ScH951, a 

more realistic approach indicates that the expected broadening effect might well be much lower. 

For instance, assuming negligible other broadening effects (,12 = f12 = 0) and performing 
the Doppler integration for Im(P32) according to eq. (2.13) the low-intensity limit yields dark 

resonance linewidths of several hundred Hz only. This is due to the fact that the contrast of 

the dark resonance decreases for increasing optical detuning. Hence the contribution of atoms 
exactly on resonance with the first laser appears with higher weight than the Doppler-shifted 
contributions such that on the whole Doppler broadening of the dark resonance remains below 

the simple estimate. 

In the presence of the buffer gas, however, residual Doppler broadening is expected to be com­
pletely negligible due to Lamb-Dicke narrowing: If the mean free path Am of a radiation-emitting 
atom is much shorter than the radiation wavelength A (in the so-called Lamb-Dicke regime) , 

Doppler broadening gets suppressed [DIC53, VAN891. In the case of the dark resonance the rel­
evant wavelength is A = 3.26 cm corresponding to the 9.2 GHz difference frequency whereas the 
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mean free path of cesium atoms in the presence of neon at room temperature can be gathered 
from the experimentally determined diffusion constant Do [BEY71] and the mean relative veloc­

ity between Cs and Ne atoms v as Am = 3D Iv ~ 70 /-Lm· mbarlp. Accordingly, the Lamb-Dicke 

effect is expected to set in already at very low buffer gas pressure. This clearly constitutes an 
advantage with respect to the coated cell technique, because the need to reach the Lamb-Dicke 

regime would result in severe restrictions concerning the cell dimension. For further discussion 

see chapter 5.2.3. 

Collisional relaxation In order to estimate the influence of various collisional processes on 

ground state relaxation one calculates the relaxation rate rrelax from the corresponding cross 

section a, the relative velocity v and the number density N as 

rrelax = Nva. (3.12) 

Whereas spin exchange and spin relaxation cross sections for cesium-neon collisions are of the 

order of 10-24 cm2 (see chapter 5.3.2 and [BEY71, WAL97]), those for collisions between cesium 
atoms at room temperature are reported as aSE = (2.18 ± 0.12) . 10-14 cm2 for spin exchange 
[BEY71], and aSR = 2.03.10-16 cm2 for spin relaxation [BHA80]. For a cesium vapour pressure 

of 10- 6 mbar this yields rCs-Cs ~ 6 Hz, which is negligible only in the absence of buffer gas. 
However, comparison with eq. (5.22) and fig. 5.20 shows that for intermediate buffer gas pressures 

rCs- Cs should contribute towards the dark resonance linewidth by more than 10 %. For further 

discussion see chapter 5.3.2. 

3.2 Zeeman splitting 

The application of an external magnetic field along a certain direction destroys the isotropy of 
the atomic system under consideration and thus the degeneracy with respect to the angular mo­

mentum z-components. As all of the external magnetic fields considered below are sufficiently 

weak and therefore do not affect the finestructure coupling one only has to consider the Hamil­
tonian H describing the atomic hyperfine structure interaction in the presence of an external 

magnetic field with flux density 13: 

Hhf = A f. J + gJ/-LB J. 13 + g[/-LB f· 13 
s 2 n n (3.13) 

where for cesium I = 7/2, A = h!:::..hfs/(I +~) = h· 9.192631770GHz/4, 9J = 2.0025402, and 
g[ = -0.39885395 . 10-3 [WHI73]. For F = I ± 1/2 the energies of the new eigenstates shift 

according to the Breit-Rabi formula: 

(3.14) 
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where x = (gJ - gj)f-tBB/A(I + 1/2), so that for cesium x = 3.0496· B/T. 

In all of the following the applied magnetic fields are assumed weak enough such that (F, mp) 

practically remain good quantum numbers for both the ground and the excited states. Hence 

in total there are 16 non-degenerate ground state and 32 excited state levels involved in dark 

state preparation on the D2 line and the simple concept of a three-level A-system is definitely no 

longer valid. In fact, the experiment shows that the dark resonance splits into several Zeeman 

components, both the number and the relative strength of which depend on light polarizations 
and magnetic field direction. Fig. 3.2(a) shows an example of a dark resonance split into seven 

Zeeman components (in a longitudinal field and with a+a+ laser polarizations). Fig. 3.2(b)' 

illustrates the respective Zeeman levels and one-photon transitions involved where for simplicity 
only one set of excited states has been included. From the Breit-Rabi formula the position of 

the dark resonances can be derived as the frequency difference 6.f between the two Zeeman 

levels involved: 

(3.15) 

where a = gjf-tBB /h, and mp implies (F, mp). In the linear Zeeman regime (x « 1) the dark 

resonance labelled n = m4 + m3 shifts with a rate 

® 

-6 -4 -2 0 2 4 6 

resonance number n, 
relative frequency detuning 

-6 -4 -2 0 2 4 6 

resonance number n, 
relative frequency detuning 

(3.16) 

Figure 3.2: Example of Zeeman split dark resonances in a longitudinal field (a'+(j+ laser polariza­
tions). Both an experimentally r-ecorded spectrum (a) (where the line shapes appear 
dispersive due to the lock-in technique used) and a sketch of the r'espective Zeeman 
levels involved (h) ar'e shown, where for simplicity only one excited state multiplet is 
included. 

Hence the dominant contribution towards dark resonance Zeeman shifts can be characterized 

by n. With n fixed, the contributions for different possible values of 6.m = m4 - m3 are 
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determined by laser polarizations and selection rules. Fig. 3.3 illustrates the coupling of pairs 

of Zeeman levels for equal nand D.m = 0, ±2. For dipole transitions with two photons involved 

the maximum value of D.m is 2. If it is assumed that dark states are prepared only between 

pairs of Zeeman levels the simplified situation depicted in fig. 3.3 together with eq. (3.15) would 
predict a dark resonance line (for fixed n) split into three components due to the purely nuclear 

contributions for different D.m (also see section 5.1.4). However, for arbitrary laser polarizations 

and magnetic field directions it is by far not obvious how various Zeeman levels are coupled for 

different D.m and what their final contribution towards the dark resonance measurement signal 

actually is. This will be the main concern of the next section. 
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Figure 3.3: Possible couplings between Zeeman levels for fixed n = m4 + m3 but different 6.m = 
m4 -m3 

3.3 Multilevel theory of Zeeman-split ePT resonances 

3.3.1 Basic ideas of the model 

In principle the behaviour of a system consisting of a bichromatic light field interacting with a 

multilevel atom (48 levels in the case of the cesium D2 transition) could be described completely 

by the corresponding density matrix equations. However, in the face of the number of levels 
involved the rather awkward determination of numerical solutions of such a system does not 

promise to yield considerable physical insight. Multilevel systems have been tackled by several 

authors, e.g., see [TAI96 , KAN96 , LIN96], and [ARI96AJ for references. But usually the main 

concern of those authors is the theory of stationary states in degenerate multilevel systems, 
whereas the situation to be described here consists of a multilevel system whose degeneracy is 
partially lifted due to the presence of a small magnetic field. None of the contributions cited 
above yields a method to directly model the experimentally recorded variety of selection rules 
and line strengths attributed to the existence of a Zeeman multiplet of dark states. Therefore, 

a rather straightforward model has been developed the main concern of which was the under­
standing of geometry dependence in the experiment . Some of the underlying assumptions of the 
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model started off as hypotheses and did not result from rigorously proven theoretical considera­

tions. However, detailed agreement with the experimental results strongly suggests the validity 
of the physically intuitive assumptions made. 

The main idea of the model is to decompose the multilevel system into effective A-subsystems 

which are regarded as completely independent . Each subsystem consists of one Zeeman level 

from each of the two ground state F -multiplets such that b.m ::; 2, and any excited state which 
can simultaneously couple to both ground states. A particular example of such a decomposition 
is illustrated in fig. 3.4. 

F=4 • • • ---,. - • • • 
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1 , 
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F=3 • •• 
ffiF= ·· · 0 • • • 1 2 3 

Figure 3.4: Example for the decomposition of the multilevel system into a sum of 3-level systems. 
The pair of ground states m, 1), 14, 2)) can be part of up to four 3-level subsystems, 
depending on which of the four excited states 13, 1) , 13, 2) , 14, 1), 14, 2) are coupled 
simultaneously to the pair of ground states n3, 1), 14, 2)). This is determined by 
the one-photon selection rules for the actual laser polarizations and magnetic field 
direction . 

For a given Raman detuning 8 R complying with the resonance condition imposed by the Breit­

Rabi formula only resonant subsystems are considered. Even if there are several resonant sub­

systems which cannot be resolved due to homogeneous (e.g., saturation) and inhomogeneous 
broadening (e.g., due to field inhomogeneities) those are still treated independently. These as­

sumptions might be characterized as the lowest-order contribution in a perturbation expansion 

with respect to the number of photons involved. In particular, this excludes Zeeman coherences 

induced by more than two photons. Furthermore, it is always assumed that the magnetic field , 
although strong enough to lift the Zeeman degeneracy, does leave (F, mp) as good quantum 

numbers for all ground states. Together with the restriction to Raman resonance only, it follows 
that within the limits of the model no superposition states involving more than just one Zeeman 
level of the same multiplet have to be taken into account. Hence in this picture no interference 
effects arising from ground state levels shared among various effective A-subsystems have to be 
paid attention to. Then the relative strength of any Zeeman component in the dark resonance 
spectrum reflects the relative strength of the corresponding resonant A-subsystem. Presuming 
equal population in all ground state Zeeman levels (for optical pumping see section 5.7) the rel-
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ative strength of a A-subsystem is given by the coupling strength for the stimulated two-photon 

transition between the two ground state Zeeman levels IFi' mi}, IFf' mf} involved. In the lowest­

order approximation this coupling strength is calculated as the square of the transition amplitude 

AA (mi' m f) in second order perturbation theory, which naturally implies a summation over all 

polarizations present in the light field and all possible excited state contributions: 

(3.17) 

where 'lj; is a shorthand for all other quantum numbers characterizing the respective atomic 
state. The effective two-photon operator 0/\ describes a process where one photon is absorbed 

from one of the light beams and a second one emitted into the other light beam. For low enough 

laser power any saturation and optical pumping effects are neglected such that absolute laser 

intensities affect all A-subsystems in the same way and can be omitted as mere proportionality 

factors. 

Under these assumptions the maximum number of dark resonance Zeeman components can be 

inferred from eq. (3.15). If the experimental resolution is not high enough to resolve contributions 

which only differ in their nuclear spin dependence (as it might be the case, e.g., for the system 

shown in fig. 3.3) the coupling strengths for the respective pairs of ground state Zeeman levels 
have to be added. 

Before going into any details of the calculation some of the underlying assumptions have to be 

discussed. 

1. In order for the coupling strengths to be the crucial parameters any Zeeman optical pump­

ing has to be negligible so that all populations are equal at first. For low enough intensities 

this condition is well fulfilled, as it will be demonstrated from the detailed agreement of 
the model with the experimental results. Optical pumping itself was not investigated in 

detail, but a few considerations are given in section 5.7. 

2. As the F' = 2 and F' = 5 excited states cannot contribute towards dark state prepa­
ration their presence can be viewed as loss channels out of the dark states via resonant 

one-photon absorption. Since the coupling strengths for these transitions depend on mp 

the steady state population balance between various dark states might be expected to 

change. Recently, it was found theoretically that population losses and transit-time effects 

in a multilevel system considerably influence the dark resonance linewidth and contrast 
[REN98J. But the regime under study was completely different from the situation en­
countered here because the authors assumed degenerate ground states and high intensities 
(several times the optical saturation intensity) such that optical pumping between Zeeman 
sublevels was dominant. In contrast, the experiments described in chapter 5 show that for 

the low intensities used this depopulation pumping can be neglected. Therefore this effect 

is completely ignored here. 
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3. As explained in detail in [CoH92] dark state preparation can also be viewed as an inter­

ference effect between different channels of scattering events all transferring an atom from 

an initial state li) to a final state If). Hence in the unsaturated case it appears quite 
natural to characterize dark resonances by their respective coupling strengths. Further­

more, experimental evidence is given that the contrast of the dark resonance increases 

with intensity, i.e. , Rabi frequency [ARI96A]. Since the latter also contains the transition 

matrix elements between the levels involved the above assumption again appears reason­

able. However, although it has not been possible to rigorously prove the validity of this 
assumption, very good agreement with the experimental results seems to justify it. 

3.3.2 Transition strengths 

In all of the following the quantization axis will be chosen along the magnetic field direction. 

Accordingly, in order to account for a rotation of the field direction one has to transform the 

laser polarizations into the new reference frame. I'I/;Fmp) is chosen as a suitable basis, where 

1'1/;) denotes !i"LSJ) with the principle quantum number it while L, S, J are those of the orbital, 
spin, and total electronic angular momentum. 

In second order perturbation theory with all non-resonant processes neglected the two-photon 

transition amplitude between an initial state li) and a final state If) can be derived as [Lou83]: 

(3.18) 

Here J = -er is the electric dipole operator, r the position vector of the valence electron, Is) 
are all possible intermediate excited states, WI is the frequency of the light field fA, Wsi the 

frequency difference between states Is) and li), and IS the decay rate of state Is). Hence, for 

the cesium D2 transitions this reads: li) = 16SI/2,F = 4,m4), If) = 16SI/2,F = 3,m3), and 

Is) = 16P3/2, Fs, ms)· 

Since the components of any cartesian vector can uniquely be identified with the components 

of a spherical tensor of rank 1 it is most convenient to directly express all vectors in the spher­

ical tensor basis {el,eo,e- d. This will greatly simplify the calculations exploiting symmetry 
relations and tensor algebra. 

The position vector 'r can be decomposed into its components rI, r -11 ro, where the former two 

correspond to circular polarizations for the light propagation direction along the quantization 
axis, and the latter to linear polarization along this z-axis. With the spherical tensor components 
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ap , bq of the two light fields El, E1, eq. (3.18) can be written as 

AA <X I::2) -l)p+qa_pb_q (11 rp Is) (si r: li) 
Wl - Wsi + 27rZfs/2 s p,q 

2 K 

<X I: I: (-l)Qa~~ (1IR~K) li) 
K=OQ=-K 

<X (11 OA li) , 

where (JA is the effective two-photon operator and 

p,q 

R~K) = I:I:(lp1QIKQ) rpls) (slrq /N('l/J,Fs) 
s p,q 

23 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

For a detailed derivation see [WYN98B, WYN99AJ. Application of the Wigner-Eckart theorem 

to (11 R~K) li) allows to split off the Q dependence: 

(3.23) 

The important point to note here is that AA has been decomposed into purely geometry­

dependent contributions a~K) and the 3j-symbol on the one hand and on the other hand the 

geometry-independent term M(K) containing atomic properties only. Hence any change in ge­

ometry can be accounted for by a rotation of the polarization tensor whereas all the remaining 

formula remains the same. This applies not only to polarizations but also to changes of the 

magnetic field direction. If an external magnetic field is not along the laser propagation direc­

tion ez , all one has to do is to transform the input polarizations into a coordinate system with 

ezl along B. By definition, for spherical tensors this is effected by the rotation matrices D~2/: 

_(K) _" (K) D(K) 
aQ1 - ~aQ QQ'. (3.24) 

Q 

Since the product state of two tensors ofrank 1, as given by the two photons, can be decomposed 
into irreducible tensor contributions of rank K = 0,1,2, there are only those multipolarities to 

be found in the above expression. Furthermore, scalar coupling (K = 0) is not possible between 

two states of different angular momentum FI i- Fi , as it is the case here. Therefore in principle 

only vector (K = 1) and quadrupole (K = 2) coupling can contribute such that for a given pair 

of initial and final states (mi' m I) the transition amplitude reads (the 3j-symbol vanishes unless 
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[(1) (pJ 1 ~:) M(1) AA ex: ami - m! -mf mf -mi 

(2) (~J 2 ~:) M(2)]. + ami-m! 
mf -mi 

(3.25) 

This tensor decomposition was done on the analogy of the treatment of two-photon absorption 

by CAGNAC et al. [CAG73] for Wl = W2, HERRMANN et al. [HER86] for Wl i- W2, BONIN AND 
McILRATH [BON84] for the study of selection rules for two-photon absorption. YURATICH AND 

HANNA [YuR76] found a general expression for multiphoton processes of arbitrary order, based 

on symmetry arguments, and discussed Raman transitions as a special case. 

Finally, the multipole amplitude M(K) can be calculated as 

M(K) =(_1)Fi-F!+KJ2K + 1 

x I) _1)2Fs {~f ~ 
1j;,Fs 

(3.26) 

While details of the derivation of M(K) are again given in [WYN98A, WYN98B, WYN99A] it is 

important to discuss the treatment of the intermediate excited states in more detail. 

The simplicity of the above formulae mainly results from the approximation of Zeeman degen­
eracy in the excited state. In eq. (3.19) the energy of the Zeeman levels only enters via the 

energy denominator N('ljJ, Fs) = Wl - Wsi + 27ri'rs/2 where it gives a negligible contribution as 
long as the Zeeman splitting is small with respect to the excited state relaxation rate IS' Even in 

the case without buffer gas this is a very good approximation since in the experiments Zeeman 

shifts were usually of the order of several tens of kHz whereas IS ~ 5 MHz. Therefore in the 
calculation of M(K) the summation over the excited state z-components basically reduces to a 

sum over products of 3j-symbols which greatly simplifies the formulae. 

In contrast, the summation over the excited state F-components offers a straightforward method 

to account for the influence of an additional buffer gas. M(K) can be written as the product of 
a term V(K, Fs) depending on the total angular momentum quantum number Fs of the excited 
state and a term U(K) containing Fs-independent terms only: 

M(K) = U(K) L V(K, Fs) (3.27) 
1j;,Fs 



3.3 Multilevel theory of Zeeman-split ePT resonances 

with 

U(K) (_1)I+Lj+Sj+Js+Ls+Ss(2Js + 1)J(2K + 1) 

x V(2Fj + 1)(2Fi + 1)(2Jj + 1)(2Ji + 1) 

x {~; ~ ~f} {~: ~: ~,} (L[llrIIL,)(L, llrIIL,) 
(-1 )Fi+Fs+Fj+I+Ji+JS+Jj+K 

x{; ~ ;,}{~~; ~} 
x {i i; n N(;,F~) 
W(K,Fs)jN('ljJ,Fs) . 
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(3.28) 

(3.29) 

As discussed in chapter 5.5 the contrast of the dark resonance is strongly reduced if the optical 

detuning becomes comparable to the excited state relaxation rate. In this respect the situations 
encountered in vapour cells with or without buffer gas are crucially different. In a pure cesium 

vapour cell at room temperature the Doppler width of the D2 line is 370 MHz which is comparable 

to the hyperfine splittings in the 6P3/2 state but considerably larger than the naturallinewidth 

IS ~ 5 MHz (Fig. 3.1). Hence for laser frequencies within the Doppler-broadened absorption 

profile two different velocity classes are resonant with the transitions li) --+ Is) for Fs = 3 and 

for Fs = 4. These classes give the dominant contribution of level Fs to the dark resonance line 

strength. For each individual atom only one Fs-level will effectively enter into Srel because the 

states Is) have a frequency difference much larger than IS' So instead of a summation over all 

excited states for each atom one has to sum over all atoms which independently interact with 
either the Fs = 3 or the Fs = 4 excited state. 

In the presence of a buffer gas, however, IS can be of the same order or even much larger than 

the hyperfine splittings. Thus for each atom both Fs levels must be included into the summation 

over excited states. Therefore, apart from using the appropriate value of IS, the model accounts 
for the buffer gas by performing the summation over all possible excited states for transition 
rates (no buffer gas): 

S~e~ buffer gas ex L L(-1)Qa~~ (_~j ~ ~ii) X U(K)V(K, Fs) 2 

Fs K,Q 

or transition amplitudes (for sufficiently high buffer gas pressure): 

Sbuffer gas 
rei 

(3.30) 

(3.31) 

When the summation is over amplitudes (eq. (3 .31)) , interference effects can play an important 

role. In fact , the model shows that at sufficiently high buffer gas pressure, i.e., large IS, the 
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K = 2 contributions cancel: in a buffer gas no quadrupole coupling is possible. This can be seen 

in the following way: With 6i = W1 - wsi(Fs = Fi) and 6f = W1 - wsi(Fs = Ff ) the summation 

over the two possible values of Fs can be written as 

; '"' ~ 6i - hs/2 6f - hs/2 
~V(K,Fs)~W(K,Fi)· 62 2/4 +W(K,Ff)· 62 2/4 
Fs 2 + "1 s f + "1 s 

(3.32) 

For large 'Ys the terms br and 6J in the denominators quickly become negligible: 

4 2 
LV(K,Fs) = -d6iW(K,Fi) + 6fW(K,Ff )] - i- [W(K, Fd + W(K, Ff )] 
Fs 'Ys 'Ys 

(3.33) 

After some angular momentum algebra one finds that the imaginary part vanishes for K = 2 
(for details see [WYN98BJ) so that the transition amplitude scales like y;2 and the line strength 

like "1;4. In contrast , for K = 1 the imaginary part does not vanish but in general dominates 

because of its "1;1 dependence for the amplitude and "1;2 for the rate. Therefore the K = 2 

contribution to the transition amplitude decreases with increasing 'Ys and becomes negligible, 
for example, above a few tens of mbar of neon in cesium vapour. A similar argument was given 
by HAPPER AND MATHUR [HAP67] for the case of one-photon optical pumping of atoms with 

an excited state hyperfine splitting smaller than the Doppler broadening. 

In the high buffer gas limit, i.e., ifthe dominant contribution towards the resonance denominator 

N(~p, Fs) stems from 'Ys, N becomes effectively independent of Fs and can be omitted as an overall 

proportionality factor. Then the expression for 2:.1/J ,Fs V(K, Fs) in eq. (3.27) can be evaluated 

analytically to give: 

(3.34) 

The limit of high buffer gas pressure can also be understood from a slightly different point 

of view. If the excited state hyperfine structure is almost completely disturbed by collisions 

between cesium and buffer gas atoms F is obviously not a good quantum number any more. 
Hence the excited state under consideration here is simply 16P3/2). Starting from eq. (3.19) the 

coupling strengths between the pairs of ground state levels (Ii), If)) can be calculated in the same 

manner as before except for the actual formulae for the intermediate excited states. Instead of 

using excited states Is) = InLSJFmF) now these states must be labeled Is) = InLSIJmrmJ). 
As (F, mF) is still treated as a good quantum number in the ground state it is convenient to 
choose the (F, mF) basis for all states. Hence the excited state reads: 

Is) = L (Fsmsl I mr J mJ) IFsms) . (3.35) 
Fs,ms 

The relevant part (jl R~ li) of the transition matrix element (jl R~ li) containing the atomic 

quantities is given by: 

(jl R~ li) = L (11 rp Is) (si rq li) N(~, ~) 
s 

(3.36) 
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which in the case of high buffer gas pressure gave: 

UI R~ li) = N~?j;) L (Fjmjl rp !Fsms) (Fsmsl rq !Fimi.) 
Fs,ms 

(3.37) 

On the other hand, under the assumption that N(?j;) is independent of m[,mJ, inserting the 

expression for the excited state P3/2 into eq. (3.36) and exploiting the closure relation for the 
Clebsch-Gordan coefficients yields: 

/ ' ') 1 x (I m[ J mJ I Fs ms) \1 m[ J mJ I Fs ms N(?j;) 

L ~ (Fjmjl rp !Fsms) (F;msl rq !Fimi) N~?j;) 
Fs,m s Fs 

(3.38) 

which is identical to eq. (3 .37). Of course this is what must be expected since in both cases 
the summation over excited states only involves atomic properties without any other parameter 
being dependent on the summation index. Hence after performing the sum the result must be 

independent of these states. 

3.4 AC-Stark shift 

3.4.1 AC-Stark shift in pure cesium vapour 

In the low intensity limit it is sufficient for many purposes to treat the atom-light field interaction 

as if the light field simply probed the unperturbed atomic transitions. However, for a more 

detailed description one has to consider the new eigenstates of the complete atom-field interaction 
Hamiltonian (dressed atom approach) such that the energies of the formerly unperturbed atomic 
levels are shifted (AC-Stark shift or light shift) where the shift depends on both light intensity 
and detuning. 

In the case of the dark resonance the concept of an AC-Stark shift might appear paradox since 

the dark state does not couple to the light fields and thus cannot be perturbed. However, the 
model leading to equation (2 .6) is far too simple because it does not include relaxation. A more 
careful analysis shows that the 'darkness' of coherent population trapping crucially depends 
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on relaxation. The description of coherent population trapping in the coupled/noncoupled 

state basis gives a rather straightforward explanation of this phenomenon because after suitable 

simplifications the population in these two states is coupled by the dephasing rate f12 [ARI96AJ. 

In the model described in this work relaxations only enter via phenomenologically introduced 

decay rates for spontaneous emission, collisions etc. Other relaxation mechanisms become ap­

parent from a quantum mechanical treatment of the light field. For instance, it has been found in 

a theoretical approach extending beyond the rotating wave approximation that the 'darkness' is 

fundamentally limited by four-photon processes resulting from the interaction with the vacuum 

field [GRI98J. 

The calculations described here for the treatment of AC-Stark shifts will also be compared with 

experimental results for saturation broadening and dark resonance line shapes in chapter 5. 

The treatment of the AC-Stark shift closely follows the theoretical considerations devel­

oped so far. Since the multilevel model decomposing the total system into effective three­

level systems produces excellent agreement with the experimental results it appears rea­

sonable enough to continue with such a model. For experimental reasons it is conve­

nient to only consider the n = 0 dark resonance component for a + a+ polarizations in 
a longitudinal magnetic field. Then the two relevant three-level systems to be taken 

into account are (IS1 /2,F = 4,mp = 0) , IS1 /2,F = 3,mp = 0), IP3/2,F' = 3, mF' = 1)) and 
(IS1/2, F = 4, mp = 0), IS1 /2, F = 3, mp = 0), IP3/2, F' = 4, mF' = 1)). According to sec­
tion 3.3.2 it is possible to consider the two excited state contributions independently, i.e., to 

add the contributions of the two A-systems incoherently. The influence of the P3/ 2 , F' = 2, 5 
excited states mainly consists in an additional contribution towards the ground state dephasing 

rate f12 via ofr-resonant one-photon absorption from the ground state. This is paid attention to 

in the model in that the value inserted for f12 corresponds to the experimentally found linewidth 

in the low intensity limit: f12 = 27r . 4.2 kHz. Since f12 is an effective dephasing rate that com­
prises residual Doppler broadening at 9.2 GHz, time-of-flight broadening etc. , nothing is really 
known about the ratio f 12!r12. 

From eq. (3.10) one numerically calculates the Doppler-integrated dark resonance line profiles 

n"(F' = 3) , n"(F' = 4) for the two A-systems. With respect to the presence of two excited 

states the optical detuning b L will be defined as the detuning of the laser frequency from the 
3,4 cross-over transition in the following. Finally, the two resulting line shape contributions are 
added to produce the total signal n": 

n" = n"(F' = 3, bR, b~ + 100.75 MHz) + n"(F' = 4, bR, b~ - 100.75 MHz). (3.39) 

The dark resonance position, defined as the minimum of this absorption profile, can then be 
determined numerically, both as a function of intensity and of the optical detuning. In order to 
compare the resulting dependencies with the experimental data it is essential to insert correct 

values for decay rates and Rabi frequencies taking into account angular momentum couplings. 
As derived in appendix D decay rates, with '10 = '11 + '12 = 27r . 5.3MHz, have to be scaled as 
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follows: 

,1/,2 = 7/5 

,1/,2 = 1/3 

for F' = 4 

for F' = 3, 

whereas a similar treatment of the Rabi frequencies leads to 

with C(Id as given in eq. D.7 and 
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(3.40) 

(3.41) 

(3.42) 

W1 (F' = 3) = 1/96, W1 (F' = 4) = 7/96, W2 (F' = 3) = 3/32, and W2 (F' = 4) = 25/672. 
(3.43) 

3.4.2 AC-Stark shift in the presence of buffer gas 

In order to model dark state preparation in the presence of buffer gas several additional aspects 

have to be considered. For typical buffer gas pressures collisional dephasing and relaxation 

mainly affect the optical transitions. But the influence of collisions between cesium and buffer 

gas atoms on dark state preparation goes beyond merely line broadening effects. The influence of 
velocity-changing collisions on the dark resonance was discussed by ARIMONDO [ARI96B]. An­

other important aspect is the complex interplay between the Doppler effect and line-narrowing 

due to the Lamb-Dicke effect. For direct microwave transitions and arbitrary buffer gas pressures 

this was examined by GALATRY [GAL61]. His approach is general enough to be applied to any 
process involving ground state coherences. Still, one cannot expect the dark resonance to ex­

hibit the very same behaviour as the direct microwave transition because dark state preparation 
necessarily involves the optical transitions which are affected differently by buffer gas collisions. 

First of all, for typical buffer gas pressures the Lamb-Dicke regime is reached for the microwave 

transitions but not for the optical ones. Furthermore, according to [ARI96B] collisional broad­

ening of the optical transitions also entails a reduced pumping rate into the dark state, hence 

decreased contrast of the CPT resonance. Since a detailed theoretical analysis taking all these 

aspects into account is not yet available, the main concern of this section is to find a simplified 

model which should be as independent as possible of a detailed description of the cesium-buffer 
gas interaction. Comparison with the experiment in section 5.2.3 will show to what extent the 
model is adequate. 

Starting from the insight gained at the end of section 3.3.2, namely that in the limit of high 

buffer gas pressure the multilevel model is consistent with the assumption of a P3/2 excited state, 

this idea should be pursued a bit further. Instead of calculating the incoherent sum of the two 
upper state contributions as in the preceding section one only has to evaluate the three-level 
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system consisting of the two ground states 1681/2, F = 4, m4), 1681/2, F = 3, m3) and the excited 
state 16P3/2, mJ) with decay rates and Rabi frequencies adequately adjusted. 

Choosing the {IF, mF)} basis the excited state reads: 

IP3/ 2I' J' ml' mJ') = 2:= (F' mF' I I' J' ml' mJ') IF', mF') , (3.44) 
F' ,mp' 

and taking into account that the dipole operator does not couple to the nuclear spin the Rabi 
frequencies can be calculated as: 

(3.45) 

The decay rates simply scale with the degeneracy of the two ground state hyperfine components: 

,1 2F1 + 1 9 

,2 2F2 + 1 "7 ' (3.46) 

and for a given buffer gas pressure the total decay rate ,0 = ,1 +,2 can be calculated from 
eq. (3.11). Since a detailed and thorough analysis of decay and dephasing rates on the optical 

transitions due to buffer gas collisions could not be found in the literature it is assumed that 

,i = r i for all collisionally broadened transitions. 

Two different approaches, which might be considered as the two possible extremes, are used to 

treat Lamb-Dicke narrowing. On the one hand, dark resonance line shapes were calculated in 

that the effect was ignored completely: 

(3.47) 

On the other hand, the Doppler shift of the frequency difference was ignored completely, i.e. , 
eq. (3.9) was omitted and eq. (3.10) was replaced by: 

(3.48) 

Note that in the case of high buffer gas pressure the optical detuning 6 L is again defined according 

to eq. (2.9) and fig. 2.1, where the excited state 13) is given by the centre of gravity of the excited 

state hyperfine multiplet which corresponds to the position of the P3/ 2 state in the hypothetical 

absence of the hyperfine splitting. 
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4 Experimental realizations 

4.1 Coherently coupled bichromatic fields 

As discussed in chapter 2.1 the preparation of CPT resonances requires a coherent bichromatic 

light field. On the cesium D2 line coherent coupling of light fields with a 9.2 GHz frequency 

separation has to be achieved, which is an experimentally non-trivial task. One might think 

of various methods to produce such a field: Modulation techniques might provide the most 

straightforward methods. Acousto-optical (AOM) or electro-optical modulators (EOM) inserted 

into the beam path of a single-frequency laser create frequency sidebands at the modulation 

frequency with fixed phase relation to the carrier. Omitting all but the two desired frequencies 

(e.g., with the help ofthe transmission through a Fabry-Perot interferometer or simply neglecting 

all other sidebands if they are off-resonant enough) one ends up with the coherent bichromatic 

field. Although AOMs are routinely used in experiments on sodium (fmod = 1.77GHz, A = 

589 nm), e.g., for the demonstration of the application of CPT resonances as an atomic frequency 
standard [HEM83], for modulation frequencies as high as 9.2 GHz it is extremely hard to achieve 
sufficient modulation efficiency. Despite their availability at this modulation frequency the 

problem with EOMs mainly lies in the high r. f. driving power needed, which leads to thermal 

stability problems if constant modulation efficiency is required. Therefore, the only modulation 
technique actually employed here was a direct modulation of the laser injection current. In 

order to end up with sufficient power in the sidebands special laser diodes, so-called VCSEL 

(Vertical-Cavity Surface-Emitting Lasers), with high intrinsic modulation bandwidth had to 

be used. The respective experimental set-up will be presented in section 4.3.2. 

The most versatile method, i.e., with complete freedom of choice concerning polarization, di­

rection, diameter and intensity of the two frequency components, is to employ two independent 

lasers and electronically phase-lock them onto each other. The major part of the experimental 

results stems from measurements with phase-locked lasers , and the following section will be 

dedicated to the respective set-up. 

4.2 Phase-locked diode lasers 

4.2.1 Diode lasers 

At a wavelength of 850 nm commercially available edge-emitting laser diodes based on AIGaAs 
structures provide narrow band and reliable sources of laser radiation and have become important 
tools for precision spectroscopy. The set-up used here basically follows the concepts reviewed in 
[WIE91, MAC92]. The extremely divergent laser beam emanating from a commercial laser diode 
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mounted in a SOT-148 package is collimated by an achromatic lens . Both optical and electrical 

feedback is used to tailor the laser output. Optical feedback from an external grating in Littrow 

configuration allowed to improve single-mode operation of the diode and to actively control 

the output frequency of the laser via the tilt angle of the grating. A standard temperature 

stabilization scheme was used where a Peltier element controlled by an electronic servo loop 

stabilized the diode temperature to within about 1 mK. The short-time stability of the laser 

frequency (i.e., for averaging times of about a second) of such a system lies in the range of 
several hundred kHz whereas over longer time intervals the system still shows frequency drifts 
and jumps due to external acoustic or thermal noise. Hence, in order to further increase the long­

term stability of the laser another standard technique was employed in that the laser frequency 

was locked to an external reference frequency via a slow servo loop. This reference could be 

obtained from a simple absorption signal in an auxiliary Cs cell or from Doppler-free saturation 

spectroscopy resonances which provide an even steeper frequency discriminator. In both cases 

the servo loop controlled the tilt angle of the grating via a voltage applied to a piezo element. 

4.2.2 Optical phase-lock 

The general idea of phase-locking is the stabilization of the relative phase between a master and a 

slave oscillator via an electronic servo loop. Many details on implementation and techniques are 

given, e.g., in [GAR79]. Phase-locking for optical frequencies was first demonstrated more than 

30 years ago [ENL65] and has found applications, for instance, in optical frequency multiplication 
chains [TEL90, PRE95]. The particular scheme employed here is sketched in fig. 4.1. 

master laser 

slave laser 

phase/frequency 
detector 

Cs vapour cell 

20 MHz 

local 
oscillator 2 

photo 
diode 

9.17 GHz 

local 
oscillator 1 

mixer 

Figure 4.1: Experimental set-up of the optical phase-lock at 9.2 GHz difference frequency 

The master laser is usually stabilized to an absorption signal of the transition involving the 
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F = 4 ground state hyperfine component. The injection current and grating tilt angle of the 

slave laser are chosen such that its frequency roughly corresponds to the Doppler-broadened 

transition from the F = 3 ground state, as monitored with the help of an auxiliary Cs cell. The 

two laser beams are superposed, and a certain fraction of the overall power is focused onto a fast 

photodiode (Antel Optronics AR-S2) which allows to detect the beat note at 9.2 GHz whereas 
higher frequency contributions are averaged out: 

S9GHz ex: (IEIsin(wIt+'PI(t)) + E2sin(w2t + 'P2(t))12)t 

ex: EIE2 cos(~wt + t.'P(t)) (4.1 ) 

with ~w = W2 - WI, ~'P(t) = 'PI (t) - 'P2(t). After suitable amplification this signal is compared 

to a 9.172 G Hz frequency from a stable reference source (the so-called first local oscillator LO 1). 

In a second mixing stage the resulting signal at 20 MHz frequency 

S20 MHz ex: sin((~w - WLOl)t + ~'P(t) - 'PLOl) (4.2) 

is fed into a digital phase detector. This device compares the phase of the signal with that of 

yet another stable reference frequency at 20 MHz (L02). Hence for ~w - WLOl - WL02 = 0 the 

error signal finally obtained is 

S ex: sin(~'P(t) - ('PLOI + 'PL02)) (4.3) 

which for small phase excursions is proportional to the excursion. In general, the second mixing 

stage could be performed by just another mixer simply providing an output signal proportional 

to the overall difference phase. But in that case phase excursions of more than 7f /2 would 
cause the servo loop to drop out of lock. Oscillation cycles would be lost until the loop relocks 

again, probably at a different phase due to the periodicity of the signal. The use of such an 

analogue phase detector has been proved possible but the loop was not stable enough, especially 

for grating stabilized diode lasers with rather broad linewidths. In contrast, the digital phase 

detector used here, whose design follows the set-up presented by PREVEDELLI et al. [PRE95], 
consists of digital counters keeping track of the number of oscillation cycles of both the beat 
signal and the second local oscillator. This allows the slave to remain locked without any cycle 

slips even for phase excursions as large as ±317f. Hence under realistic laboratory conditions a 

much more stable device results. Details on the particular implementation of the phase detector 
are given in [BRA96]. Finally, a passive loop filter provides an additional phase shift of the signal 
in order to compensate delays in the electronic circuitry and the phase of the laser 's transfer 
function. In order not to diminish the loop bandwidth by a slow response of the slave laser 

the main portion of the error signal is applied directly to the laser via its injection current. 
Long-term drifts are compensated by a second, much slower loop where, after integration, the 
error signal is fed to the grating piezo element. Typically loop bandwidths of more than 2 MHz 
could thus be obtained. 

Fig. 4.2 shows the beat note power spectral density of two phase-locked lasers from which the 

average residual phase excursion cPrms can be determined. This phase excursion is related to the 
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relative power 'rJ contained in the carrier via 'rJ = exp( -cP~ms) [HAG79]. With 'rJ = 99 .4% given 

by the relative area under the carrier a residual phase excursion of only cPrms = 4° results. 
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Figure 4.2: Power spectral density of the 9.2 GHz beat note between phase-locked diode lasers. 
From the relative area under the central peak a residual phase excursion of about 4° 
was determined. 

To record a dark resonance spectrum the slave frequency was stepped across the resonance 

via the frequency of the second local oscillator. In order to exclude relative drifts between 

the reference frequencies all active frequency components were stabilized to the same 10 MHz 

reference frequency. 

4.2.3 Experimental set-up 

Fig. 4.3 sketches the set-up for the ePT experiments using phase-locked lasers . Faraday isolators 

with an extinction coefficient of 60 dB are used to eliminate unwanted feedback into the laser 

diodes. Perfect spatial mode matching of the two laser beams is not only needed for a good 

beat note independent of spatial variations over the area of the photodiode but also for the 

suppression of residual Doppler broadening of the dark resonance due to non-parallel alignment of 
the two laser beams. For slightly misaligned beams residual Doppler-broadening would broaden 
the line by several hundred kHz/mrad [ScH95]. Therefore a stretch of single-mode optical 

fibre serves as a mode filter for the bichromatic field. Of course, using this technique pointing 

instabilities of the laser beams, e.g., arising from thermal drifts or acoustic vibrations of the 
mirrors used throughout the whole set-up, translate into intensity fluctuations behind the fibre 
via fluctuations of the fibre conpling efficiency. Spatial mode matching on the fast photodiode 
is similarly affected by acoust.ic noise. In fact, the set.-up showed considerable sensitivity not 

only to the draught of the air conditioning syst.em and any movement. in t.he room but also 
to low-voice speech. Accordingly, the stability of both the phase-locked loop and the intensity 
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behind the fibre could be increased enormously when the whole set-up was completely covered 

in a plastic film construction. 
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Figure 4.3: Experimental set-up for dark state preparation in thermal cesium vapour with phase­
locked lasers 

The use of a single-mode but non-polarization-preserving optical fibre allowed to independently 

control the polarizations of the two lasers by quarter- and half-wave plates inserted into the 

respective beam paths. However, for both polarizations chosen equal - as it was usually the 
case - the respective polarization optics was placed directly in front of the Cs cell in order to 

minimize depolarization effects of mirrors, attenuators etc. Furthermore, a two-lens telescope 

could be employed to change the beam diameter. The Cs cell itself was placed inside three 

mutually orthogonal current coils to compensate the geostatic magnetic field and to apply a field 
of controlled strength and direction. Finally, the actual measurement signal was the transmission 

signal behind the Cs cell as recorded by a photo diode. For precision magnetometry experiments 
the cell could be placed into a double layer p,-metal shielding with an estimated shielding factor 
of about 103 . Some experiments required the application of particularly uniform fields. Thus 

a special arrangement of current coils was used, tailored in order to provide less than 0.1 % 
deviation over the interaction volume. 

The Cs gas cells were cylindrical with typical diameters and lengths of 2 cm. A drop of metallic 

Cs inside the cell provided about 1.6.10-6 mbar Cs vapour pressure at room temperature which 

is enough in order to obtain sufficient absorption signal without the need of further heating of 

the cell. For investigations of CPT properties as a function of buffer gas pressure special cells 
closed off by a vacuum tap could repeatedly be filled with different buffer gas pressures. Some 

sealed-off cells with a fixed amount of buffer gas were available as well. 

Due to the thermal movement of the Cs atoms and the additional hyperfine components F' = 2, 5 
in the excited state the strength of the dark resonance is relatively weak - as compared to the 
background of inhomogeneously broadened one-photon absorption. Thus, in order to increase 
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the signal-to-noise ratio for the dark resonance, frequency modulation techniques (FM) were 

employed [TAK75, BJo83, LEN84, GEH85]. The modulation signal, typically with a modulation 

frequency of 1 kHz and a phase modulation index of M = 1, was applied to the slave laser via 

the respective modulation of the 20 MHz reference frequency. Subsequently the transmission 

signal was demodulated in a lock-in amplifier. Since for diode lasers the linewidth enhancement 

factor Cl( is different from zero, frequency modulation always entails a small modulation of the 

amplitude (AM) as well. A fit to the experimental data typically yielded an AM contribution 

of at most a few percent. For details on frequency modulation and line shape retrieval see 

appendix A. Another very handy feature of the frequency modulation technique is that the use 

of a dual-phase lock-in amplifier allows to determine both the absorption and the dispersion 
of the medium - at least up to a constant factor. Getting the complete information from a 

single transmission measurement is definitely much easier than, e.g., recording dispersion spectra 

in a balanced Mach-Zehnder interferometer [ScH95]. However, the latter method also yielded 

absolute values. 

If not stated otherwise the frequency of the master laser was stabilized near the 3,4 crossover 
resonance of the F = 4 transition whereas the slave laser was stepped across the resonance via 

computer control of the second local oscillator frequency. Both the in-phase and quadrature 

component of the spectra demodulated by the lock-in amplifier were recorded simultaneously. 

4.3 Frequency-modulated laser 

In order to employ direct laser injection current modulation with sufficient efficiency at 9.2 GHz, 

laser diodes with as high an intrinsic modulation bandwidth as possible have to be sought. 

Usually, efficient sideband creation is possible for frequencies up to the laser relaxation oscillation 
frequency which in the case of edge-emitting laser diodes usually is a few GHz. Despite this 
constraint injection current modulation at 4.6 GHz was shown to be efficient enough to use the 
first order sideband on either side of the carrier for a magneto-optical trap [MYA93] or a ePT 

experiment in a cesium atomic beam [HEM93]. Since optical feedback from an external cavity is 

used in most of the set-ups involving edge-emitting laser diodes the overall modulation efficiency 

could be enhanced considerably if the free spectral range of the external cavity was carefully 
matched to the desired modulation frequency [MYA93]. 

In principle such a set-up would be feasible for dark state preparation as well, nevertheless 

imposing a limit on the buffer gas pressure to be used: With both first order sidebands resonant 

with one of the hyperfine transitions each the strong carrier frequency, which typically contains 
more than 60 % of the total power, is detuned by 4.6 GHz from either resonance. For typical neon 
pressures of several tens of rnbar pressure broadening of the opticallinewidth reaches hundreds 
of MHz such that the carrier detuning corresponds to only a few homogeneous linewidths. Hence 

unwanted background absorption or interference with the sideband dark state preparation might 

well be present. Another aspect which does not speak in favour of the 4.6 GHz modulation 
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technique is that in some cases (e.g., in the configuration for precision magnetometry proposed by 

FLEISCRRAUER and SCULLY [FLE94]) higher total intensities are desired. For fixed modulation 
efficiency this would necessitate higher total power thus again increasing the possibly detrimental 
influence of the carrier. For these reasons, after having demonstrated the feasibility of dark state 

preparation with 4.6 GHz sidebands, only 9.2 GHz modulation techniques were employed here. 

4.3.1 Vertical-cavity surface-emitting lasers (VCSEL) 

Recent advances in semiconductor processing techniques have led to the development of the 
so-called VCSEL (Vertical-Cavity Surface-Emitting Lasers). Although mainly aimed at the 

telecommunications market the high modulation bandwidth of VCSELs also lends them to dark 

state preparation especially since they are available at the required wavelengths for both the 

cesium and rubidium D2-lines. 

The main feature of the VCSEL is its extremely short resonator. Whereas in conventional edge­

emitting diodes the resonator length is typically a few hundred {Lm, it is only about 1 - 5 {Lm 

for the VCSEL. In order nevertheless to achieve photon densities high enough to facilitate 

laser operation the active region must be surrounded by high reflectivity mirrors that consist 

of distributed Bragg reflector layers with reflectivities higher than 99 %. The free spectral 
range of the extremely short optical resonator thus established is so large that typically only 
one longitudinal cavity mode lies within the gain profile of the medium. Hence the VCSEL 

intrinsically operates in a single longitudinal mode, without the need for external mode selection 

components [JuN97, CRA9S]. Furthermore, high photon density in connection with a small 
active volume and small electrical capacity also leads to high modulation bandwidths which can 
even exceed 10 GHz [KIN9S]. Fig. 4.4 compares a VCSEL structure with that of a conventional 

edge-emitting laser diode. 
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Figure 4.4: Typical structures of (a) a VCSEL and (b) a conventional edge-emitting laser diode. 

As its name already suggests, the layer structure of the device is grown parallel to the wafer 
surface and the laser radiation is emitted through the top or bottom reflectors, i.e., perpen­
dicularly to the wafer. Hence large arrays of VCSELs, one next to the other, can easily be 
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grown, integrated, tested and operated without the need to cleave the wafer. Apart from the 

mere ease of fabrication this opens up many opportunities for applications, e.g., in connection 

with fibre optics. Since the area from which the laser irradiation emanates can be made con­

siderably larger than for edge-emitting type diodes the diffraction-limited beam divergence is 
typically smaller. Furthermore, the high reflectivity mirrors reduce the sensitivity of the VCSEL 

to spurious external optical feedback, although for practical purposes a Faraday isolator is still 

used. 

The laser linewidth is typically of the order of a few tens of MHz which is roughly one order of 
magnitude larger than for edge-emitting diodes. 

The VCSEL used in the experiments here was a prototype provided by the group of Prof. 

Ebeling from the University of Ulm. Its bottom Bragg reflector is made of 30.5 n-type silicon 

doped AIAs/ Alo.2Gao.8 As layer pairs. The central region is one wavelength thick and contains 

three 8 nm thick GaAs quantum wells embedded in Alo.5Gao.5As spacer layers in order to pro­
vide efficient carrier confinement. The p-type top Bragg reflector consists of 26 carbon doped 

Alo.2Gao.8As/ Alo.9GaO.lAs layer pairs. An extra 30 nm AlAs layer, selectively oxidized for cur­
rent confinement after wet chemical mesa etching [JAE97, JUN97], is inserted in the lowest top 

mirror layer. The oxidation procedure step not only reduces the threshold current but also helps 

to ensure single transverse mode operation. 

4.3.2 Experimental set-up 

The VCSEL was mounted in a brass housing with an SMA connector for the current supply. 

A bias-T was used to combine the DC current supply with the GHz modulation current. The 
output laser beam was shaped with the help of an achromatic collimating lens and temperature 
control of the VCSEL was accomplished similarly to the set-up described in section 4.2.1. 

Exploiting both the temperature and injection current dependence the VCSEL wavelength could 

easily be tuned to the desired value. Again similarly to the conventional set-up the wavelength 

was det~rmined from the transmission signal in an auxiliary cesium cell. A similar slow feedback 
loop was used to stabilize the VCSEL frequency to the Doppler-broadened transmission signal, 
in this case applying the error signal to the laser injection current. 

Fixed output frequency necessitates higher injection current if the temperature is lowered, there­

fore the VCSEL output power available at the desired wavelength could be optimized in that 
the VCSEL was held at a temperature as low as possible. Since the laser diode housing was 
not air-tight, condensation of atmospheric humidity restricted the accessible temperature range 
to above 13° C. Varying the laser injection current at low frequencies via the DC current con­

trol allowed to easily scan the laser frequency over the two 9.2 GHz-split hyperfine components 

with a detuning rate estimated as 300 GHz/mA. In contrast, using the conventional set-up it 
was extremely difficult to scan the laser over such a large frequency range without mode-hops. 
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Hence the use of the VCSEL also opens up the possibility to easily study dark resonances for 

much larger optical detunings. The modulation bandwidth of the VCSEL used was typically 
specified as large as 10 GHz [KIN9S] thus principally allowing very efficient creation of 9.2 GHz 

sidebands. However, considerable reduction of the overall modulation efficiency can arise from 

impedance mismatching in the VCSEL connections. As the VCSEL current is very low (about 

2 mA) in comparison with the edge-emitting diodes used in the conventional set-up, the VCSEL 

frequency shows a much higher sensitivity to the ever present current noise component at the 

50 Hz power line frequency. Comparison of the resulting frequency excursions with a Doppler­

broadened cesium absorption line allowed to estimate its amplitude to about 50 MHz which is 

of the same order of magnitude as the fast intrinsic VCSEL linewidth. Recent modifications of 

the experimental set-up include the use of a battery-powered VCSEL supply thus reducing the 
slow laser frequency fluctuations to about 20 MHz. For a more detailed discussion see [AFF99]. 
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Figure 4.5: Experimental set-up for the observation of dark resonances usmg a frequency­
modulated VCSEL 

Fig. 4.5 sketches the set-up for the dark state experiment with a VCSEL which is both compact 

and mechanically robust, as compared with the set-up depicted in fig. 4.3. Normally one would 

refrain from the use of the optical fibre because modulations of the coupling efficiency due 
to mechanical vibrations of the optical components are translated into intensity fluctuations 
behind the fibre. Due to geometrical constraints the beam of the VCSEL prototype behind the 
collimating lens was not a pure TEMoo mode but showed some diffraction pattern. For dark 

state preparation this might lead to unwanted effects. In the case of an unbuffered cell the 

effective laser beam width as seen by the atom will be given by the width of one intensity fringe 
only thus increasing time-of-flight broadening even more. Since it is also rather difficult to give 
an estimate of the mean intensity without a detailed knowledge of the beam profile the single 

mode fibre was used as a mode filter for the laser beam. The resulting Gaussian laser profile 
had a diameter of 1.56 mm and typically a power of 40 p, W available for the experiment. The 
corresponding maximum intensity of about 1 m W /cm2 is comparable to the respective optical 
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two-level saturation intensity. If compared to the phase-lock set-up the lower total power of the 

VCSEL can lead to a poorer SIN ratio on the detector. 

Frequency modulation spectroscopy with lock-in detection was employed as in the other ex­
perimental situation. This resulted in a double modulation technique where the VCSEL carrier 

frequency was modulated by the respective GHz frequency which was itself frequency-modulated 

in the kHz range. Details on the expected lock-in line shapes are given in appendix A. Usually 

the carrier frequency was stabilized to the F = 4 Doppler-broadened absorption spectrum from 
the auxiliary cesium cell and the +lst GHz modulation sideband was stepped across the dark 

resonance. 

4.3.3 Characterization of the VCSEL 

A more detailed characterization of the VCSEL is needed if this set-up is to be used for precision 

spectroscopy of CPT resonances. Subtle details of the dark resonance such as the AC-Stark 
shift and the line shape critically depend on both the total power and the relative powers of the 

bichromatic light field. Hence one has to scrutinize the modulation behaviour in the GHz range 

not only of the isolated VCSEL but of the whole set-up which could well be different because 

of impedance mismatching. The second point of interest is the linewidth of the VCSEL output 

which is expected to be much larger than for an edge-emitting laser diode. 

VCSEL linewidth A standard method to measure a laser linewidth consists in self­

heterodyne measurements [ScH96] where the coherence time is determined with the help of 
a sufficiently long delay line. However, another approach was followed here because of its exper­
imental ease and availability: Saturation spectroscopy offers a rather simple method to obtain 

fairly narrow Doppler-free resonance lines where for low enough intensities the linewidth ap­

proaches the natural linewidth of the transition under investigation (which in the case of the 

cesium D2 line is 5.3 MHz). If the linewidth of the atomic transition is considerably narrower 
than the bandwidth of the light source the minimum linewidth of the saturation spectra mea­
sured roughly corresponds to the latter. 

In order to record saturation spectra with the VCSEL a standard saturation spectroscopy set­

up as sketched in fig. 4.6 was used. A detailed account of saturation spectroscopy on the 

cesium D2 line can be found, e.g., in [ScH94, SCH95]. Due to the large inherent bandwidth of 
the VCSEL it was not possible to resolve the double structure of the saturation dip denoted 
(c) in the experimental spectrum in fig. 4.7 where the two peaks are separated by only 26 MHz. 
Subtracting the Doppler background from the measured curves and fitting Lorentzian line shapes 
to the three most pronounced peaks yields a full width at half maximum f::..fexp= (55 ± 4) MHz 
for each saturation peak [AFF99]. 
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Figure 4.6: Experimental set-up for saturation spectroscopy measurements using a VCSEL. The 
misalignment of the pump and probe beams is not to scale; the residual angle was 
about 0.50 • 
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An analysis of broadening mechanisms described in [AFF99] shows that only residual Doppler­
broadening from misalignment of the pump and probe beams and saturation broadening notice­
ably contributed towards the totallinewidth measured. These contributions could be estimated 

as ~f Ci = 1.2 MHz and ~fsat = 5.7 MHz respectively. The experimentally measured line shape 

can be described as a convolution of all line shape con.tributions and under the simplifying 

assumption of Lorentzian line shapes the total linewidth ~exp is given by the sum of all con­

tributions. Hence the laser linewidth ~L can be estimated as ~L ~ ~fexp - ~fCi - ~fsat ~ 

(48 ± 4) MHz. It is instructive to compare this result with an estimate of the minimum laser 

linewidth ~fST due to spontaneous emission as given by the Schawlow-Townes formula [YAR91]: 

Ai hi (~fres)2 (1 + 2) 
L.l.. ST = 7r ,L P a. ( 4.4) 

With the laser emission frequency h = 350 THz, the resonator width ~fres = c(l -
R)/(27rnLR) ~ 34 GHz (length L = 1.2 J.Lm, mirror reflectivity R = 0.997), the a-factor a = 2.6 
[EBE97] and an output power P = 500 J.L W one gets ~fST ~ 13 MHz which is about a factor 
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of four below the value of flfexp obtained above. But this discrepancy can be understood at 

least qualitatively since the experimentally measured linewidth not only includes the quantum 

limited laser linewidth but also the influence of slowly varying noise components of the injection 
current arising, e.g., from power line interferences at 50 Hz. The large VCSEL linewidth might 
be responsible for the fact that in unbuffered cells the dark resonance contrast is extremely low 

because only a fraction of the laser power lies within the optical transition linewidth. Hence 

large improvements can be expected from a better VCSEL current stabilization in the future. 

VCSEL injection current modulation The output frequency of diode lasers can easily 

be modulated via the injection current. For modulation frequencies above several MHz the 

temperature response of the diode can be neglected and the modulation behaviour is governed 
by the carrier density only. On the one hand, modulation of the injection current directly causes 
a modulation of the carrier density, hence the emission wavelength, via the refractive index and 

the optical length of the resonator. On the other hand, the carrier density also influences the 

electron-hole recombination rate and thus the optical output power via the number of photons 

present in the resonator. Therefore injection current modulation always entails both frequency 
and amplitude modulation of the laser emission. 

In the standard approach a rate equation model of the carrier and photon density is used to 

calculate the frequency and output power response to the applied modulation [Y AR91]. In 

a simplified version the model leads to a driven damped harmonic oscillator equation with a 

resonance frequency W R (also called relaxation frequency) at 

( 4.5) 

where B is the amplification coefficient, go the equilibrium photon density and tc the photon 
lifetime in the resonator. In [AFF99] estimates for B, go and ~c are discussed for both VCSEL 
and typical edge-emitting diode lasers. Although the photon lifetime 

n 1 -1 tc=-(a--lnR) 
c L 

(4.6) 

(with refractive index n, loss per length a, resonator length L and mirror reflectivity R) decreases 

for shorter resonators, tc is roughly the same for both the VCSEL and edge-emitting diodes 

because of higher mirror reflectivities for the VCSEL. In contrast, due to the high reflectivity 
and the small gain volume, the photon density is larger for the VCSEL such that the relaxation 

frequencies for output powers of 1 m W can be estimated as WR ~ 3.4 GHz and WR ~ 7 GHz for 
the edge-emitting laser and VCSEL, respectively. 

The experimental characterization of the VCSEL modulation efficiency requires a spectrometer 
determining the relative strengths of the modulation sidebands. In principle this could be 
accomplished by a scanning Fabry-Perot interferometer or by registering the beat note of the 
modulated VCSEL impinging on a fast photodiode with subsequent detection at the modulation 



4.3 Frequency-modulated laser 43 

frequency in a spectrum analyser. However, because of the experimental simplicity in the face 

of t he large VCSEL linewidth and low total power, the procedure chosen was to retreat to a 

spectrometer based on cesium absorption spectroscopy again . For a given modulation frequency 

in the GHz range (input power +1 dBm) the VCSEL frequency was scanned via t he DC current 

supply at a low repetition rate such that the absorption spectrum obtained in a cesium vapour cell 
(typical length 2 cm) could be recorded with a storage oscilloscope. The frequency width of the 
scan was chosen large enough to include both the carrier and all visible sideband contributions 

for the two 9.2 GHz spaced components of the D2 line. Typical spectra recorded for modulat ion 

frequencies of Wmod = 2.5 GHz, and Wmod = 7 GHz, respectively, are shown in fig . 4.8. Whereas 
for Wmod = 2.5 GHz sidebands up to third order are visible the modulation efficiency decreases for 
higher frequencies such that only first order sidebands remain discernible. Furthermore, in the 

former spectrum the influence of amplitude modulation becomes obvious from the asymmetry 

of the sidebands of the same order but opposite sign. 
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Figure 4.8: Absorption spectra of the two 9.2 GHz spaced components of the cesinm D2 line with 
a VCSEL modnlated at (a) Wmod = 2.5 GHz and (b) Wmod = 7 GHz. The sideband 
order is denoted n. As the modnlation efficiency decr·eases for increasing modnlation 
freqnency only first order sidebands remain visible for the higher modnlation freqn ency. 
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Under the given experimental conditions of an optically thin vapour and negligible saturation 

the measured strength of each absorption peak is proportional to the power contained in the 

respective frequency component, such that the relative absorption peak height can be taken as a 
measure of the relative frequency component strength. Hence the relative strengths of all peaks 

(taking into account the sloping background due to the laser power increasing with the laser 

current) could be determined as a function of modulation frequency. 

Since the VCSEL a-factor is typically of the order of 3 one expects both amplitude and frequency 
modulation if the VCSEL injection current is modulated in the GHz range. According to the 
derivation given in appendix C the relative strength Sn of the n-th sideband is given by: 

(4.7) 

where M is the phase modulation index, R the amplitude modulation index, 'ljJ the phase shift 
between frequency and amplitude modulation, and In(M) denotes the n-th Bessel-function of 

M. Sn was normalized to a total line strength of unity. 

For each modulation frequency R, M, 'ljJ were obtained from a fit of the sideband strengths 

given by eq. (4.7) to the experimentally determined values. Obviously, with this method the 

modulation efficiency at 9.2 GHz can .only be determined from an interpolation because two first 

order side band contributions coincide with the carrier of the other D2 line component and thus 

cannot be resolved. Similar arguments hold true for Wmod = 3 GHz and Wmod = 4.5 GHz. 

For modulation frequencies above 6.5 GHz the amplitude modulation contribution becomes too 

small for a reasonable fit of Rand 'ljJ. Hence for higher frequencies pure frequency modulation 

is assumed: R = 0, 'ljJ = 0 and eq. (4.7) reduces to Sn = I n(M)2. 

With the fitted values for M the frequency excursion D.w = Wmod . M was calculated and the 
resulting frequency dependence of D.w is depicted in fig. 4.9. 

D.w clearly shows the expected resonant behaviour. Using the formula for the amplitude A(w) 
of a driven damped harmonic oscillator 

A(w) = Aa 
V(w2 - w~)2 + ')'2w2 

(4.8) 

a fitted value of WR = (6.8 ± 0.2) GHz was obtained which is of the same order of magnitude 

as expected. Still, it has to be kept in mind that in the experiment described above only the 
modulation response of the complete VCSEL system was determined instead of the response of 

the bare VCSEL. This included losses and impedance mismatching effects in the connectors or 
the VCSEL housing but gives the relevant information needed for precision spectroscopy. 

Moreover, the simple formula for A(w) also yields an estimate of the modulation bandwidth 

D.wl/2 of the system, defined as the modulation frequency for which the modulation efficiency 
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Figure 4.9: VCSEL frequency modulation amplitude .6.w = Wmod * M as a function of the mod­
ulation frequency Wmod. The resonant behaviour allows to estimate the relaxation 
frequency WR ~ 6.5 GHz. Arrows indicate the ground state hyperfine splitting of Cs, 
85 Rb and 87 Rb. 
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has dropped to half the value at w = O. The result is b..wl /2 ::::::: 10.2 GHz which again is of the 
same order of magnitude as expected [EBE97]. 

Further details and a comparison with the modulation response of a conventional edge-emitting 

diode laser can be found in [AFF99]. 

Interpolation of M to the modulation frequency Wmod = 9.2 GHz yields M9GHz = 0.26, corre­

sponding to a power fraction contained in the first order sideband of about 1.7 %. This value 

will be used for the theoretical calculations presented in chapter 5. 
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5 Experimental characterization of ePT resonances 

In order to exploit an experimental phenomenon for precision measurements a detailed under­
standing of the phenomenon itself is a prerequisite. Optimization would further include the 

enhancement of favourable features and, if possible, the suppression of influences which might 

falsify the measurements. 

The main application envisioned for ePT resonances consists in measuring extremely small 

magnetic fields via the Zeeman shift of the resonance line thus employing the resonance line 

as a frequency discriminator. In such a measurement system the dark resonance absorption 

or dispersion signal would be monitored for a suitably chosen but fixed Raman detuning <5 R 

of the lasers. Then any line shift of the dark resonance manifests itself in a change of the 
recorded measurement signal, as illustrated in fig. 5.1. The main concern of this chapter is to 
report the first detailed experimental characterization of the dark resonance with respect to this 

application. 

signal 

81 14------1 

frequency 

Figure 5.1: Principal idea of precision measurements with resonant features: for fixed driving 
frequency fo line shifts cause changes in the corresponding measurement signals from 
51 to 52. 

The main phenomenon to be investigated is the dark resonance response to an external static 

magnetic field. For a given pair of ground state Zeeman levels the corresponding dark resonance 

Zeeman shift can directly be taken from the Breit-Rabi formula, whereas the number and relative 

strengths of the Zeeman components present for a given experimental situation is not at all 
obvious. Nonetheless, excellent agreement between the multilevel-theory developed in section 3.3 
and the experimental evidence given in section 5.1 will show that all Zeeman line shifts and 

splittings are well understood. 

Based on this knowledge, an important step towards optimization of the system consists of the 
reduction of the experimentally recorded linewidth because the steepness of the resonance line 
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is a crucial parameter. In the experiments described here this was done with the help of the 

buffer gas technique, as explained in section 5.3. 

Coming back to the use of CPT resonances as frequency discriminators: in order to attribute 

a change in signal to the underlying effect of interest any other influences on the measurement 

signal have to be excluded or at least understood so that they can be corrected for. To begin with, 

this includes any effect which also shifts the dark resonance line. Therefore several frequency 
shifting influences such as AC-Stark shifts and buffer gas induced shifts will be discussed. 

But there are also other categories of systematic influences which can change the relevant mea­

surement signal of a frequency discriminator, e.g., changes in the overall line height and in 
linewidth arising from the dark resonance dependence on intensity, as examined in section 5.6. 

Changes in line shape can have a similar effect, therefore they are discussed in section 5.2. 

Detailed understanding of external influences on the CPT resonance also helps to find the best 
operating conditions for a CPT-based magnetometer. The set of parameters to be optimized 
with respect to the signal-to-noise ratio (SIN), the susceptibility to fluctuations etc., would 
contain, for instance, both total and relative laser intensities , optical detuning from one-photon 

resonance, buffer gas pressure etc. Although the current status of the experiment is still far from 

a refined implementation of the device, some interesting correlations between various influences 

are readily found. 

Although the presence of a buffer gas allows for very smalllinewidths it also constitutes a source 

of frequency shift and reduces the SIN ratio due to a decrease of the dark resonance contrast 

[ARI96BJ. A similar argument holds for the laser intensity, because decreasing intensity yields 

both a narrow line and a reduced AC-Stark shift, but also a worse SIN ratio. 

For the experimental study of the influence of parameters other than a magnetic field, one 
can reduce the influence of shifts and line broadening from magnetic field inhomogeneities if 

in a small longitudinal magnetic field (typically few tens of /-LT) CT+ 0'+ laser polarizations are 

used and only the 0 - 0 component is considered. It corresponds to the coherence between the 

181/2, F = 4, mF = 0) and 181/2, F = 3, mF = 0) levels and is shifted by magnetic fields merely 
in second order. This particular experimental configuration will be referred to as the standard 
configuration throughout this chapter. Yet , other dark resonance components might show de­
viations - however minute - from the behaviour of the 0 - 0 component because of different 

Clebsch-Gordan coefficients. Therefore, for ultimate accuracy it will be necessary to scrutinize 

the behaviour of those components in an extremely homogeneous magnetic field which was not 

available at the time these experiments were performed. 
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5.1 Multilevel effects 

This section compares the predictions of the multilevel-model developed in chapter 3.3 with the 

experimentally recorded Zeeman split dark resonance spectra in terms of their dependence on 

polarization and magnetic field direction. The first sections might be summarized as 'low reso­

lution effects' whereas in sections 5.1.4, 5.1.5 more subtle effects are discussed which demanded 

much higher homogeneity of the applied magnetic field. 

The dependence of the relative line strengths on magnetic field direction is illustrated in Fig. 5.2 
with a series of spectra recorded with identical circular laser polarizations in a cell with 87 mbar 

of neon as a buffer gas. f3 denotes the angle between the laser propagation and the magnetic 

field direction. When f3 is increased the seven even-numbered resonances seen at low f3 gradually 
vanish while the eight odd-numbered resonances continually grow until, for f3 approaching 90°, 
they alone make up the spectrum. 
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Figure 5.2: Dark resonance spectra for (J"+ (J"+ excitation and different angles f3 between laser beam 
and external magnetic field (E::::; IOj.LT, 87mbar Ne b1tjJer gas). The dispersive line 
shapes are due to the lock-in detection . 

The effect of the inhomogeneity of the magnetic field within the interaction region becomes 
clearly visible from the fact that the linewidth of the dark resonance Zeeman components in­

creases with 1nl = 1m3 + m41· In an inhomogeneous field every atom, confined within its own 
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small region in space due to the extremely slow diffusion in the atmosphere of high buffer gas 

pressure, experiences a different magnetic field strength. That is to say the dark resonance 

positions differ from one atom to the next such that the sum over all atoms renders a broadened 
line. Since the resonance position is proportional to n this line broadening effect is worse for 

larger 1nl. Therefore, in order nevertheless to compare relative line strengths one has to con­

sider the areas under the respective lines instead of their peak heights. Hence the evaluation 
of the raw spectra in Fig. 5.2 consists of a first integration to retrieve absorptive line shapes, 

followed by a second integration to determine the area under each peak. Finally the relative 
line strengths were normalized to unit total area for every complete spectrum. The results can 

be used to check two different predictions of the model: the angular dependence of the fraction 
of overall line strength contained in the even- and odd-numbered peaks, respectively, and the 
relative strength of different peaks for a fixed fJ . 

Total line strengths As indicated before, a rotation of the magnetic field direction by fJ 
around the y axis can be accounted for by a rotation of the polarization tensor components 

akK ) This is accomplished with the help of eq. (3.24). 

Figure 5.3: The magnetic field is rotated against the light propagation directions by an angle (3 

In the experimental situation depicted in fig. 5.2 both light beams are ()+ polarized with respect 

to their propagation direction ez along the quantization axis (fJ = 0). For arbitrary values of fJ 
the polarization tensor components are 

a~2) = - i sin2 fJ 
a~2) = - i sin 2fJ 
a~2) = ~(~ sin2 fJ - 1) 

a~f = i sin 2fJ 
a~~ = -t sin2 fJ 

a~l) = -~ sinfJ 

a~l) = - ~ cosfJ 

a~f = ~sinfJ 
(5.1 ) 

For fJ = 0° only the Q = 0 components a~2), a~l) do not vanish so that only the seven even­

numbered peaks are allowed; this is approximately the situation depicted in the uppermost 
spectrum of fig. 5.2a. For fJ = 90° the components a~2), a~~, a~f do not vanish. But since in the 
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limit of high buffer gas pressure the K = 2 contribution practically vanishes only components 

with IQI = 1 remain such that only the eight odd-numbered peaks are present in the spectrum. 

Thus in the high buffer gas pressure limit the coupling strength as a function of magnetic field 

direction reduces to: 

S~e~ffer gas ex: I AA (K = 1) 12 ex: cos2 (3 

S~e~ffer gas ex: IAA(K = 1)1 2 ex: sin2 (3 

for Q = 0 

for Q = ±1 . 

(5.2) 

(5.3) 

For a comparison of the experimental data with this result the sum Seven of the strengths S2i 

of the seven even-numbered resonances and the sum Sodd of the eight odd-numbered resonances 

S2i+l were normalized to the total strength S = Seven + Sodd (squares and circles in Fig. 5.4). 

There is quantitative agreement with the expected sin2 and cos2 dependence on (3 which is 
indicated by the solid line. The systematic deviation apparently present (the circles are mostly 

too high whereas the squares are too low) might be due to a spurious magnetic field component 

in the y direction or imperfect polarizations. 
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Figure 5.4: Measured resonance strengths for the 7 'longitudinal' peaks (squares) and the 8 'trans­
verse' peaks (cirdes), cf. fig. 5.2, normalized to the total strength of all r·esonances. 
The solid lines cOT-respond to cos2 ((3) and sin2 ((3). 

5.1.1 Relative line strengths 

Fig. 5.5 shows the relative line strengths of the Zeeman components present for specific mag­
netic field directions for the same experimental situation as in the preceding paragraph. Columns 
represent the line strengths determined from the area under each experimental peak. The theo­
retical values were obtained by inserting the rotated tensor components a~K) into the expression 

for the transition rate in eq. (3.31). Subsequently the coupling strengths were normalized to 

a total line strength of unity. Solid circles give the calculated results in the high buffer gas 
limit which can hardly be distinguished from the exact calculation indicated as a dashed line for 
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j3 = 45° . The value r s = 27f . 300 MHz was estimated from a fit of a Voigt profile to a Doppler 

broadened absorption line in the presence of this buffer gas pressure. A comparison of the line 

strengths as depicted in fig. 5.5 with the raw spectra again illustrates the line broadening due to 
field inhomogeneities. For j3 = 86° the outermost lines are the strongest components (columns 

in fig. 5.5) although in fig. 5.2 they appear with the smallest peak height . 
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Figure 5.5: Comparison of measured (columns) and calculated (dots) resonance strengths for se­
lected spectra of fig. 5.2. The dashed lines for f3 = 45° correspond to a complete 
calculation using eq. (3.27) with r s = 27r . 300 MHz while for the dots (connected by 
solid lines) eq. (3.34) , i.e., the limit of high buffer gas pressure, was used. 

5.1.2 Change of multipolarity 

In all of the spectra presented so far equal circular polarizations were used. As discussed in 
chapter 4.2.3 the polarization was produced with the help of a polarizer in front of a quarter 
wave plate inserted in the laser beam path. Depending on the angle <p between the optic axis of 
the quarter wave plate and the linear input polarization an output polarization with a certain 

ellipticity is produced. When <p is gradually changed from 0° to 45° the corresponding output 
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polarization is transformed from linear to circular. With the notations used in fig. 5.6a the laser 

polarizations as a function of cp can be expressed in the following way: 

El = ElO ( cos cp . ex + i sin cp . ey) 
= ElO ( ( cos cp - sin cp) . ex - J2 sin cp . a +) 

and similarly for E:;', resulting in the following ag<): 

a~2) = ~ cos 2cp 
_(2) - 0 a l -
_(2) _ I 
ao - - y'6 

-(2) - 0 a_I -

a~~ = ~ cos 2cp 

(5.4) 

(5.5) 

Hence for cp = 0 one anticipates zero line strength for high buffer gas pressures (i.e., negligible 

contribution of K = 2) which should gradually increase as a function of reduced buffer gas 

pressure. In the high buffer gas limit the line strength is anticipated to depend on cp like sin2 (2cp). 
For the experimental proof three different sealed cells containing 0, 13 and 87 mbars of neon, 

respectively, were used and dark resonance spectra were recorded as a function of the rotation 

angle cp of the quarter wave plate. Fig. 5.6 then shows the line strength normalized to unity at 

cp = 45° as a function of cp. The solid lines result from a numerical fit to a x + (1 - x) sin2(2cp) 

dependence which yields x = (0.45,0.095,0.036) for buffer gas pressures of (0, 13, 87) mbar. This 
clearly indicates the gradual change in multipolarity due to increasing IS' 
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Figure 5.6: Dependence of resonance strength on laser polarization in zero magnetic field for 
different neon pressures. cp = 450 : circ1J.lar, cp = 00 : linear polarization. The solid 
line is a numerical fit with a sin2 (2cp) dependence on top of a constant offset. 



5.1 Multilevel effects 53 

5.1.3 Polarization dependence in pure cesium vapour 

The same procedure as in section 5.1.1 could be applied to a series of measurements which had 

been recorded by O. Schmidt [ScH95] several years before. Fig. 5.7 shows Zeeman split dark 

resonance spectra for various polarizations, recorded in pure cesium vapour and in the presence 

of a longitudinal magnetic field. As in this case saturation broadening of the lines is considerably 

larger than the broadening due to field inhomogeneities the experimental spectra can directly 

be compared to the theoretical line strengths calculated from equations (3.30) and indicated by 

crosses in the plots. The overall agreement is again very good, minor discrepancies might be due 

to imperfect polarizations. From the experimental side this is a problem commonly encountered 

with quarter wave plates which usually produce the correct polarizations only to within a few 
percent at best. But the presence of unwanted polarization components leads to additional 
contributions to the line strengths, which again depend on mp. 

Whereas the spectra on . the left-hand side of fig. 5.7 correspond to pure K = 2 coupling the 

ones on the right involve both K = 1 and K = 2 couplings. Therefore the former will hardly 

be visible in buffered cells whereas the polarization configurations on the right would lead to 
well visible spectra in buffered cells as well. However, due to the different formulae used for 

the unbuffered cell (see eqs. (3.31) , (3.30)) the relative line strengths considerably differ from 

those obtained from a buffered cell. For instance, compare the spectra for a+ a+ polarizations 
in fig. 5.7 and fig. 5.5. 
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Figure 5.7: Polarization dependence of line strengths in a cesium cell without buffer gas (crosses: 
calculated values). The highest peak in each spectrum was normalized to unity (exper­
imental data taken from [ScH95]). 
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5 .1.4 Line splitt ing due to the nuclear contribution 

As it was demonstrated in the preceding section, for ()+ ()+ polarizations in a transverse magnetic 

field eight Zeeman split dark resonance peaks were recorded. From the Breit-Rabi formula the 

position of these peaks labeled n (with n = m3 + m4) was derived as (see eq. (3.16)): 

(in the linear Zeeman case). (5.6) 

Hence for fixed peak number n one still has to distinguish between the possible values of 6.m = 

m4 - m3· 

Figure 5.8: For 0'+ 0'+ polarizations in a transverse magnetic field: possible couplings between two 
Zeeman levels for the same n but different f:1m. 

A typical level configuration is sketched in fig. 5.8. Using a buffer gas cell, according to eq. (5.1) 
for ()+ ()+ polarizations in a transverse magnetic field the non-zero components of the polarization 

tensor a~ are a~l) = -1/2 and a~i = 1/2. Then for given n the relevant part of eq. (3 .23) reduces 
to: 

)' ( Fj 1 F 
AA ex: 

(n - ~)/2 for 6.m=+l, 
-(n + 1)/2 +1 

)' ( Fj 1 F 
AA ex: 

(n + ~)/2 for 6.m= -1. (5.7) 
-(n - 1)/2 -1 

Thus under suitable experimental conditions one expects to resolve the two components making 
up the odd-numbered peaks which - according to eq. (5.6) - are separated by the purely nuclear 

contribution only. From eq. (5.7) the relative heights of the double peaks are anticipated as: 

5 : 3 for the n = 1 peak 

5 : 1 

21 : 1 

for the n = 3 peak 

for the n = 5 peak (5.8) 
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whereas the n = 7 peak does not split since one of the 3j symbols vanishes. 

From eq. (5.6) the shift rate of the nuclear contribution can be inferred as SnucJear = 11 .16 Hz/ f-lT 

such that some severe conditions are imposed on an experiment aimed to resolve these double 

peaks. The detection of peaks with rather low overall line strengths and in part even considerably 

different heights (for n = 2,3) necessitates sufficient optical power from the bichromatic field. 

But this in turn causes saturation broadening of all dark resonance lines . Hence in order to 

overcome this problem, too, the magnetic field has to be strong enough which on the other 

hand again causes considerable line broadening due to field inhomogeneities. Therefore one 
has to apply magnetic fields that are extremely homogeneous over the interaction region in the 
cesium cell. Experimentally this was accomplished by special pairs of tapered current coils both 

for longitudinal and transverse fields positioned inside a triple layer f-l-metal shielding. Since 

it usually takes at least a few minutes to record a whole dark resonance spectrum effective 
line broadening does not only arise from spatial field inhomogeneities but also from temporal 
variations of the coils' supply current. In total, the relative field homogeneity reached over the 
interaction region could be estimated as 6· 10-4 [KNA99]. Apart from line broadening due to 

current fluctuations line shifts might arise from current drifts due to thermal resistivity changes 

along the wires. To estimate the order of magnitude of this effect one can consider a typical 

situation with I = 3 A producing a flux density of B = 0.26 mT / A·3 A= 0.78 mT. Then the 

n = 5 peak will be shifted by about 16 MHz while the double peaks should be separated by 

about 10 kHz. If one assumes 0.1% relative current stability the peak position can jitter by 

16 kHz which is of the same order of magnitude as the splitting to be observed. Hence the use 

of an active current stabilization scheme would be the appropriate measure to be taken if one 
desired to exploit this splitting for precision measurements, e.g., the determination of g-factor 
ratios . Nevertheless, it was possible to demonstrate the splitting even without such a device. In 

contrast to the experiments described so far in this chapter, the VCSEL set-up was used. 
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Figure 5.9: Deconvoluted line shape of the n = -1 peak for cr+ cr+ polarizations in a transverse 
magnetic field. Due to the nuclear contribution the two peaks corresponding to the 
two A -systems of fig. 5.8 with 6.m = +1 and 6.m = -I, respectively, are completely 
resolved. The solid line represents fitted Lorentzian profiles . 
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Fig. 5.9 shows the deconvoluted line shape for the n = -1 peak obtained in a cell containing 

200 mbar of neon and in a field of 0.68 mT flux density, where the peak is completely split into 

the b..m = +1 and b..m = -1 components. 

From fig. 5.10 which shows the calculated relative peak heights of the two components for all 

possible values of n it becomes obvious that for equal absolute values of n but opposite sign the 

ratio of the relative strengths is inverted. This effect could also be proved experimentally, as 

demonstrated in fig. 5.11. 

./ 
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'/ o 

ill ,;/0' 3 

Figure 5.10: Calculated relative peak heights for 0-+ 0'+ polarizations in a transverse magnetic field 
as a function of the magnetic quantum number of each possible pair of ground states 
involved. 

From a fit with Lorentzian line profiles one obtains for the relative line strengths of fig. 5.11: 

Srel(n = +1 , b..m = +1) = 0.59 ±0.01 
Srel(n = +1 , b..m = -1) 
Srel(n = -1, b..m = -1) 

= 0.62 ±0.01 
Srel(n = -1, b..m = +1) 
Srel(n = +3, b..m = -1) = 5.7 ±0.2 
Srel(n = +3, b..m = +1) 
Srel(n = -3, b..m = +1) 

= 5.0 ±0.1 , (5.9) 
Srel(n = -3, b..m = -1) 

which is roughly in agreement with the anticipation of eq. 5.7. Note that due to residual magnetic 
field inhomogeneities the n = ±3 peaks are considerably broader than the n = ±1 peaks. 

5.1.5 Line splitting due to K = 2 contributions 

Consider the situation illustrated in fig. 5.12: the lasers have equal linear polarizations and the 

purely transverse magnetic field is oriented perpendicular to the laser polarizations. For this 
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Figure 5.11: Deconvolnted line shapes of the n = ±1 and n = ±3 peaks under the same experimental 
conditions as in fig . 5.9. The lines split in two components with relative line strengths 
according to eq. (5.7) . 
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configuration the model predicts that the n = 0 peak consists of two K = 2 contributions of 

equal strength with b..m = ±2. The two corresponding A-systems are illustrated in fig. 5.12 as 

well. 

The K = 2 contribution connects the pairs of ground state levels (IF = 4, mF = -1), 
IF = 3, mF = 1)) and (IF = 4,mF = 1), IF = 3,mF = -1)) which are shifted by twice the nu­

clear contribution of /-tBg[ B 12h from each other. Because of the smallness of the expected 

splitting again special attention was paid to the homogeneity of the applied magnetic field. Due 

to the large VCSEL linewidth dark resonances with good signal-to-noise ratio at low intensities 
cannot be obtained in unbuffered cells with the VCSEL set-up. But on the other hand, the 

presence of buffer gas suppresses the K = 2 contribution. Hence with the VCSEL set-up one 

has to use a buffer gas pressure high enough to obtain a reasonable SIN ratio but low enough 

not to suppress the K = 2 contribution completely. Fig. 5.13 shows the expected splitting in a 
deconvoluted spectrum which was obtained in a cell containing 9.9 mbar of neon and a transverse 

field of about 650 p.T. 

Since the SIN was very poor for those 'forbidden' resonances long averaging times were needed 

(1 s per measurement point , and the curve in fig. 5.13 consists of an average over 20 spectra). 

Therefore the influence of line broadening due to current drifts is not negligible and the spectrum 
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Figure 5.12: (a) Geometrical configuration for the observation of dark resonances split according 
to K = 2 contributions only and (b) the respective A-systems involved. 
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Figure 5.13: Deconvoluted dark resonance line shape split due to contributions of multipolarity 
K = 2, where the geometrical configuration and ground state levels involved are those 
of fig· 5.12. 

of fig. 5.13 appears very broad. Drifts might also be responsible for the line shape distortions 
visible. The peak strengths, determined from the area under the respective curves, are equal 

to each other to within a few percent, which is again in agreement with the prediction of the 
model. Although the SIN ratio is rather poor in this experimental configuration, b.m = 2 co her­
ences might be advantageous for precision magnetometry experiments because the corresponding 

Zeeman splitting increases with b.m. 

5.1.6 Comparison with microwave transitions 

As the main mechanism in coherent population trapping is the creation of ground state coherence 
one can compare the results obtained above with other configurations based on the creation of the 

same ground state coherences. Obviously the simplest example is the direct radiative transition 
between the two hyperfine-split ground states at 9.2 GHz microwave frequency. Because of parity 
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conservation the lowest allowed order is a magnetic dipole transition. With the polarization 

of the magnetic field expressed in spherical tensor components: if = Lq bqe~, the transition 

amplitude A between two Zeeman components lFi mi) and IFJ m J) is given by: 

A ex (FJ mJI il· if IFi mi) 

ex 2:)-l)qLq (FJ mJllq IFi mi) 
q 

ex M(Ml) Lb_q (FJ 1 Fi) 
q -mJ q mi 

(5.10) 

with an amplitude 

MIM1) ~ (_I)F,+Fj+I+J+l - m, j(2Fi + 1)(2Ff + 1) {~ ; ~} (JII IIIJ) (5.11) 

independent of geometry. This amplitude A can be compared with the respective transition 

amplitude AA as calculated in section 3.3.2: 

(5.12) 

Hence, if only K = 1 coupling is possible for dark resonance preparation one can find a com­

bination of microwave polarization and static magnetic field direction such that Lq = a~Q for 

all contributions in the sum. This is based on the fact that the product of two spherical tensor 

operators of rank k1 , k2 can uniquely be decomposed into the direct sum of its irreducible com­

ponents, i.e., tensor operators of rank Ikl - k21 ... kl + k2 . For K = 1 the components a~Q form 
a basis set of the irreducible subspace such that any arbitrary polarization can be synthesized. 
Now, if both multipole amplitudes M(Ml) and M(l) do not vanish one can arrive at the same 

spectrum, i.e., identical relative strengths of the various Zeeman components involved, for both 
the direct microwave transitions and the dark resonance. 

However, in general the dark resonance spectrum looks different due to the interference between 

contributions of different multipolarity. In microwave spectroscopy higher order multipole tran­

sitions can be realized via multi-photon transitions, Le., in the case under investigation here one 
would have to compare the dark resonance K = 2 coupling to the respective two-microwave­

photon transition at ~ ·9.2 GHz . But since the two-photon transition occurs at halfthe frequency 
the respective absorption line appears at a completely different position in the overall spectrum. 

Another difference lies, of course, in the fact that in dark resonance preparation certain multi­

polarity contributions can be manipulated with the help of upper state properties which is not 
possible for direct microwave transitions, either. 

Finally, in thermal equilibrium the population difference between the two cesium hyperfine 

components practically vanishes such that for microwave transitions the net effect of stimulated 

emission and absorption is almost zero. Hence in order to achieve higher signal strengths redistri­
bution of population - typically via optical pumping - is necessary. But then the relative line 
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strength of the Zeeman components is dominated by the interplay of optical pumping processes 

and does not necessarily correspond to the bare coupling strengths any more. 

5.2 Line shapes 

5.2.1 Line shape retrieval 

All of the experimental spectra were recorded with the help of frequency modulation techniques 

(FM) . Frequency-modulation spectroscopy is based on the phase-sensitive detection of a signal 
modulated at frequency Wm. In the experiment this was accomplished by frequency-modulation 
of the second light field (i.e., either the slave laser or the modulation sideband, depending 

on which experimental set-up was used) and subsequent detection of the measurement signal 

with a dual-phase lock-in amplifier. For a detailed account on the use of FM-techniques in 

absorption spectroscopy see, for instance, [TAK75, BJ083, LEN84, GEH85]. High sensitivity of 
this method stems from the fact that fluctuations, e.g., in intensity, at frequencies other than 

Wm are averaged out and the influence of 1/ f noise can be reduced by choosing high enough 

modulation frequencies Wm. Furthermore, for negligible additional amplitude modulation (AM), 
a frequency sweep of the laser results in non-vanishing signal contributions only within the 

narrow frequency interval where the amplitude and phase of the light are modified by the 
absorptive and dispersive properties of the medium under study. Even if small residual AM is 

present , as it is the case for current-modulated diode lasers, there is still a fairly good suppression 

of backgrounds that vary only slowly with frequency. Moreover, phase sensitive detection allows 
to determine both the absorptive and the dispersive properties of the medium simply from the 
transmission signal. 

In order to explain the line shapes recorded by the lock-in amplifier one starts from the incident 

electrical field E oscillating at frequency Wo which is frequency- and amplitude-modulated at 
frequency W m , with phase modulation index M and amplitude modulation index R: 

E = ~o (1 + Rsin(wmt + 1P))ei (woHMsin(wm t)) + c.c. (5.13) 

If the lock-in amplifier reference signal is given by sin(wmt + <p), the two lock-in output signals 
X, Y are then given by: 

X = 'TJe - 28o(w) [S(w) cos <p - C(w) sin<p] 

Y = 'TJe-28o(w) [S(w) sin <p + C(w) cos <p] 

(5.14) 

(5.15) 

where 'TJ is a proportionality constant that includes laser intensity, detector sensitivity, and the 
electronic gain factor of the lock-in amplifier. For correctly chosen <p the signals X , Y are simply 
proportional to S, C. If a signal independent of <p is to be gained one can choose R = vi X2 + y2. 
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For the in-phase and quadrature components S, C one finds under suitable approximations: 

S(W) = Jo(M)h(M)(cP+1 + cP-1 - 2cPo) (5.16) 

+ J1(M)h(M) (cP+2 + cP-2 - cP+1 - cP-d 

+ ~RJ5(M) ( - [cP-1 - cP+1] sin'IjJ + [2 + 200 - 0+1 - L 1] cos'IjJ) 

+ ~RJi(M) ( - [cP-2 - cP+2] sin'IjJ + [4 + Mo - 20+1 - 2L1 - 0+2 - L 2] cos 'IjJ) 

C(wo) = Jo(M)h (M) (L1 - 0+1) (5.17) 

+ J1(M)h(M)(L 2 - 0+2 + L1 - 0+1) 

+ ~RJ5(M) ([2 + 200 - 0+1 - L 1] sin'IjJ + [cP- 1 - cP+1] cos 'IjJ ) 

+ ~RJi(M)([4 + 600 - 20+1 - 2L1 - 0+2 - L 2] sin'IjJ + [cP- 2 - cP+2] cos'IjJ) 

Here Jk(M) denotes the kth Bessel function of M, and (O±k, -cP±k) are the absorptive and 
dispersive parts of the medium refractive index evaluated at frequencies Wo ± kwm . For details of 

the derivation and some peculiarities concerning double-modulation techniques for the VCSEL 

experiments see appendix A. 

Typical modulation frequencies used in the experiments were Wm = 1 kHz for the phase-lock set­
up and Wm = 7.32 kHz for the VCSEL set-up, whereas the phase-modulation index was usually 

chosen as M = 1. 

However, as evidenced in eqs. (5.16), (5.17), in FM-spectroscopy the underlying dark resonance 
line shapes do not directly become obvious from the experimental data. But for the evaluation of 

some of the experiments described in this chapter it is essential to have line shape information, 
for instance, for the determination of line positions and linewidths. Therefore two different 

procedures were used for line shape retrieval: fitting of a line shape model to the experimental 

spectra and a direct deconvolution algorithm. Both of these methods are necessary if a wide 
variety of dark resonance spectra recorded under very different conditions are to be studied 
because of the inherent limitations of the two procedures. 

Fit If a particular line shape of the dark resonance is assumed, the parameters of this model 

can be adjusted for best fit to the experimental data. In order to derive suitable fit functions 
from eqs . (5.14), (5.15) the general expressions for both the absorptive and the dispersive parts 

of the refractive index have to be known. Simple analytical formulae exist under the assumption 
of Lorentzian profiles which in many cases also yields good agreement with the experimental 
data. For larger optical detunings h, however, the line shapes show considerable asymmetries 
and thus strong deviations from simple Lorentzians. As indicated in eqs. (2.15), (2.16), in 

this case a reasonable approach towards the absorptive line profile is given by the sum of an 

absorptive and a dispersive Lorentzian profile, still with the advantage of simple expressions for 
the dispersive part as well. But in contrast to eqs. (2.15), (2.16)' slightly different line positions 
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and linewidths of the two contributions had to be admitted in order to reach good agreement 

with the experimental spectra. This might well be accounted for by the Doppler distribution 

mainly influencing the term depending on h. Other line shapes, such as Voigt, Gaussian or 

exponential profiles, are more difficult to treat with this method because the corresponding 

dispersive parts are not known analytically. 

Numerical deconvolution For the dark resonance spectra which do not agree with any rea­

sonable parametrized line shapes a direct numerical deconvolution algorithm was devised. The 

procedure is based on the fact that the signals X, Y are recorded as a set of n discrete measure­
ments (Xi, Yi) ,i = l...n. Hence eqs. 5.16, 5.17 result in a system of 2n linear equations which 

can be solved for (6i' I/Ji). Details on this procedure and its limitations are given in [WYN99B] 

and appendix A.2. Thus it becomes possible to retrieve the underlying line shapes from the 

measured FM-spectra without the need to make any line shape assumptions. Unfortunately, 

this method does not yield reasonable results if the inevitable experimental noise gets too large. 
This is particularly critical if the modulation frequency Wm is much smaller than the spectral 

width of the feature detected so that the side band structure of the spectrum is completely un­

resolved. Still, in the limit of very small Wm the deconv91ution actually reduces to a single (for 

6i) or a double integration (for I/Ji). 

5.2.2 Line shapes in pure cesium vapour 

The thermal Doppler velocity distribution tends to wash out line shape asymmetries. Nonethe­

less, they do remain discernible, and some dependencies of the dark resonance line shapes on 
beam diameter, intensity and optical detuning can readily be studied. 

According to eqs. (2.15), (2.16), for h = ° and a three-level atom at rest, one expects the dark 
resonance line shape to be Lorentzian. Despite the more complicated cesium level scheme and 

the Doppler distribution in the thermal vapour the resulting line shapes remain Lorentzian to a 

good approximation, if h roughly corresponds to the 3,4 cross-over transition, i.e., for JL ~ 0, 
and if the beam diameter is large enough for time-of-flight broadening to be negligible. 

On the other hand, when time-of-flight becomes the dominant broadening mechanism, the dark 
resonance line shape ceases to be Lorentzian. In [THo80] both the line shape and the width of a 
dark resonance dominated by time-of-flight broadening are calculated in third-order perturbation 

theory for copropagating laser fields and Gaussian beam profiles. For negligible Doppler broad­

ening of the difference frequency they find exponential line shapes ex exp(-16R/bcPT/2In2)1) 
where the full width at half maximum rCPT (in Hz) for a beam diameter d (corresponding to 
the l/e diameter of the Gaussian intensity profile) is given by 

rCPT = In2 fkT ~ . 
'if 2 V --:;;; d (5.18) 
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Fig. 5. 14 shows different dark resonance line shapes (standard configuration) recorded with two 

different laser beam diameters: dl = 0.36mm for figures (a) and (b), and d2 = 1.05mm for 

figures (c) and (d) . The relative intensity between master and slave laser was always 3 : 2 

whereas the total intensity was roughly the same for figures (a) and (c) (0.05 m W / cm 2 ), and 

figures (b) and (d) (1.3 m W /cm2 and 1.2 m W /cm2 respectively) . From the experimental spectra 

the line shapes were retrieved with the help of the numerical inversion procedure. 
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Figure 5.14: Deconvoluted dark resonance line shapes for two different laser beam diameters d 
and total intensities I: (a) d1 = 0.36 cm, h = 0.05mW/cm2 , (b) d1 = 0.36cm, 
h = 1.3mW/cm2 , (c) d2 = 1.05 cm, h = 0.05mW/cm2 , (d) d2 = 1.05 cm, 
h = 1.2 m W /cm2 . The grey lines depict numerical fits under the assumption of 
Lorentzian profiles (dotted lines) or exponential profiles (solid line) . Also note the 
different horizontal scales. 

In both figures the grey lines represent a numerical fit assuming Lorentzian line shapes (dotted 
lines) and exponential line shapes (solid lines), respectively. For low intensity and small beam 
diameter, i.e., dominant time-of-flight broadening (figure (a)), the dark resonance line shape 
shows good agreement with the exponential line profile. But as soon as saturation broadening 

becomes more dominant, either by increasing the beam diameter or the intensity, the line shape 
approaches a Lorentzian profile, as shown in figures (b) - (d). For high intensity and large beam 
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diameter the line shape agrees well with the Lorentzian line profile (figure (d)). For a better 
illustration of the change in line shape fig. 5.15 depicts the two extreme cases of figs. 5.14(a) 

and (d) with larger resolution around the line centre. Due to its transient nature time-of­

flight broadening clearly goes beyond the theoretical model of chapter 3 based on steady-state 

solutions for single atoms. The lineshapes measured correspond to a steady state of the whole 
ensemble for which the above description does not have to be appropriate any more. In fact, 
dark resonance line shapes calculated according to eq. (3.10) show excellent agreement with the 

assumption of a Lorentzian profile. 
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Figure 5.15: With a better resolution around the line centre the change in line shape between 
figs. 5.14(a) and (d) becomes more apparent. Note that the small wiggles in the 
experimental cur'ves are artifacts due to the numerical deconvolution algorithm. 

5.2.3 Line shapes in the presence of buffer gas 

Using the VCSEL set-up with the standard configuration and a cesium cell containing 71 mbar 
of neon, the dark resonance was recorded as a function of the optical detuning of the carrier for 
three different overall laser intensities. In all of these measurements the relative intensity within 
the bichromatic field remained the same, as given by the VCSEL modulation efficiency at 9 GHz: 

I wo ±9 GHz/ Iwo ~ 1.5%. For carrier frequencies within the Doppler-broadened absorption profile 
the carrier frequency could be stabilized to various frequency positions, and its frequency was 

determined from the calibrated absorption signal from an auxiliary cesium cell. For frequencies 
well outside the absorption line in pure cesium the carrier frequency was determined from a 
calibration of the laser injection current as the VCSEL output frequency tunes linearly with the 

injection current. 

Since the resulting spectra showed considerable deviations from Lorentzian profiles the numerical 
inversion procedure was employed in order to retrieve the underlying line shapes from the FM 
spectra recorded. Fig. 5.16 depicts a series of dark resonance line shapes obtained for different 

optical detunings 6L and a total intensity ofO.97mW/cm2 . According to eq. (3.11), for a neon 
pressure of 71 mbar the optical transition is shifted by about -250 MHz and broadened to about 
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610 MHz, i.e., the hyperfine structure of the excited state cannot be resolved anymore. The 

optical detuning 6L is defined as in section 3.4.2, i.e., not taking into account the buffer gas shift 

of the optical transition. 
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Figure 5.16: Line shapes of ePT resonances (71 mbar neon, standard configuration, total intensity 
0.97 m W/cm2 ) for various optical detunings 8L , retrieved from the measured FM spec­
tra via the numerical inversion procedure: (a) 8L = 0 (solid line) , 8L = -296 MHz 
(dashed line) , 8L = -780 MHz (dotted line), (b) rh = 0 (solid line), 8L = 134 MHz 
(dashed line), OL = 430 MHz (dotted line). Obviously the asymmetry of the line shapes 
follows the optical detuning OL: increasing 18L I results in increasing asymmetry while 
the orientation of the asymmetry is determined by the sign of 8 L. 

For a comparison with theory the dark resonance line shape was calculated according to sec­

tion 3.4.2. Since a detailed theoretical analysis of the complex interplay between Doppler­

broadening and the Lamb-Dicke effect in the presence of buffer gas has not yet been performed 
for ePT resonances, it is not obvious how to include Doppler-shifts into the model. Therefore 

fig. 5.17 depicts two opposite approaches. Whereas figs. 5.17(a),(b) were obtained in that the 
Doppler-integration was applied to the optical frequencies only, figs. 5.17(c), (d) include the com­

plete Doppler-integration. The parameters used in both cases were: intensity I = 1 m W /cm2, 

')'12 = r 12 = 50 Hz, ')'0 = ')'1 + ')'2 = 600 MHz, r 1 = r 2 = ')'0/2. The detunings were chosen the 
same as in the experiment, i.e., for figs. 5.17(a), (b): h = 0 (solid line) , 6L = -296 MHz (dashed 

line), 6L = -780MHz (dotted line), and for figs. 5.17(c), (d): h = 0 (solid line), 6L = 134MHz 
(dashed line), h ' = 430 MHz (dotted line). In order to reproduce the experimentally recorded 

linewidth one had to insert an extra factor of 0.5 into the calculation of the squared Rabi fre­
quencies according to eq. (3.45) which is still reasonable in the face of the rough approximation 
of the laser beam intensity profile. ')'0 is calculated from eq. (3.11) for the neon pressure used 
in the experiment , and the values for ')'12, f12 roughly correspond to the minimum linewidths 
reached for this buffer gas pressure. Yet , the choice for these parameter is not critical at all , the 

calculated line shapes hardly change if ')'12 , f12 are set , e.g., equal to ,..;ero. Comparison of these 
calculated line shapes with the experimental ones of fig. 5.16 shows better than purely qualita-
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tive agreement. General dependencies on h such as line asymmetries increasing with h or the 

reversal of the asymmetry with a sign change of o£ are exhibited already by the most simple 

approach of an atom at rest (see fig. 2.3). But apart from that, reasonable agreement concerning 

relative amplitudes and asymmetries is in fact reached for realistic parameters. Nevertheless, 

more subtle details cannot be reproduced by this simple model, e.g., the experimentally recorded 

line shapes appear to be less asymmetric than the calculated ones. Furthermore, exact agree­
ment cannot be reached for either treatment of Doppler shifts. For instance, for large o£ the 

asymmetries in figs. 5.17(a),(b) are too pronounced whereas figs. 5.17(c) , (d) do not correctly 

account for the reduction of linewidths for increasing o£. Apart from the problem with Lamb­
Dicke narrowing mentioned above, a more sophisticated model will also have ·to pay attention 
to multilevel effects such as spontaneous decay from adjacent Zeeman levels into the system, 

and to the influence of the large VCSEL linewidth. Using the simple model, the line shape 

dependence on ri, ri, i = 1,2, is not very critical as long as ri, r i are not much smaller than 
the Doppler-width. The agreement only slightly deteriorates if these parameters are changed, 
e.g. , by a factor of 2. 
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Figure 5.17: Line shapes of ePT resonances as a function of 6 L calculated according to the model 
described in section 3.4.2. (a), (b): without Doppler-integration for the 9 GHz differ­
ence frequency; (c), (d): with complete Doppler-integration . Parameters correspond 
to the experimental situation of fig . 5.16. 

For fixed o£ the line shape asymmetry dependence on the optical relaxation and dephasing rates 
can only be revealed if ri, ri are changed enormously. In principle, the larger ri, ri, the less the 
influence of the Doppler integration on the CPT line shape, because the dark resonance contrast 

starts getting suppressed only for optical detunings that are of the same order of magnitude as 
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the optical relaxation rates. Hence, for a given optical detuning the Doppler integration might 

almost completely wash out line shape asymmetries in pure cesium vapour whereas the line 

shape asymmetry is well visible in a buffered cell. 

CPT line shape asymmetries have been observed before, although with much lower precision 

and for experimental configurations that were essentially Doppler-free, for instance in an atomic 

beam experiment [KAI85] or for a single trapped and cooled ion [SIE92]. 
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Figure 5.18: Dark resonance line shapes for various laser intensities 
(J = (0.97,0.44, 0.1, 0.023) m W/cm2 ): 

(a) Experimentally measured line shapes, optical de tuning 6L =-89 MHz (dots). The 
grey solid lines represent fitted Lorentzian line profiles which agree well with the ex­
perimental line shapes. 
(b) Calculated line shapes according to eq. (3.48), i. e., neglecting Doppler-broadening 
of the 9 GHz frequency. 
(c) Calculated line shapes according to eq. (3.10), i.e., ignoring possible Lamb-Dicke 
naTrowing. 
PammeteTs used fOT the line shapes in (b), (c) weTe: 6L=-40 MHz, 1'0 = r i = 
600 MHz, 1'12 = r 12 = 50 Hz, and an additional factoT of 0.5 fOT the Rabi fTequencies. 

Fig. 5.18(a) depicts a series of dark resonance line shapes as a function of intensity, retrieved from 
measurements with the modulated VCSEL set-up, the standard configuration, 72 mbar neon, 
and optical detuning 6L=-89 MHz. Lorentzian profiles fitted to the experimental data exhibit 

quite good agreement for all intensities. Hence, at least for this particular value of h, changing 
the intensity does not result in a change in line shape but only in a decrease in amplitudes 
and linewidths. Figs. 5.18(b) and (c) show dark resonance line shapes calculated according 

to eqs. (3.48) and (3.10), respectively. The parameters used correspond to the situation of 
fig. 5.18(a): 6L=-40 MHz, /0 = r i = 600 MHz, /12 = r 12 = 50 Hz, and an additional factor of 
0.5 for the Rabi frequencies. Again, according to the discussion above, the choice of parameters 

is reasonable. The value of 6 r,=-40 MHz, chosen in order to account for the slight asymmetry 
of the line shapes, appears to be consistent with the experimental uncertainty in this value of 

about 70MHz. But, from eq. (3.11) one expects the optical resonance to be shifted by about 
-250 MHz, such that symmetrical line shapes could be expected for 6L ~ -250 MHz because 
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in the experiment the value of h is always obtained from the auxiliary cesium cell which does 
not contain any buffer gas. This discrepancy cannot be explained yet. The agreement between 

the additional intensity factors of 0.5 needed for both the calculations illustrated in figs. 5.17 
and 5.18 again suggests that its origin is systematic, e.g., due to the rough approximation of the 

laser beam intensity profile (also see the discussion in section 5.6). Comparison of figs. 5.18(b) 

and (c) leads to a similar conclusion as fig. 5.17 in that different features of the curves are 
modelled correctly by either treatment of Doppler broadening. Whereas completely ignoring 

the Doppler broadening at 9.2GHz yields correct linewidths (fig. 5.18(b)) but wrong relative 

line strengths as a function of intensity, the situation is reversed in fig. 5.18(c). Completely 
ignoring the Lamb-Dicke effect yields correct line strengths but hardly any change in linewidth. 

5.3 Buffer gas 

5.3.1 Time-of-flight broadening 

In pure cesium cells for low enough intensity the main broadening mechanism for the dark 

resonance is time-of-flight broadening. This becomes obvious from fig. 5.19 where for pure 
cesium vapour the dark resonance linewidth in the limit of zero intensity clearly depends on the 

laser beam diameter. From a linear regression fit also shown in the figure one obtains the same 

slope characterizing the saturation broadening behaviour but different minimum linewidths of 

,gfoT = (4.9 ± 0.2) kHz and ,gfoT = (2.05 ± 0.05) kHz for beam diameters of d1 = 0.36 cm and 
d2 = 1.05 cm, respectively. 
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Figure 5.19: Linewidths of the 0 - 0 ePT resonance as a function of the total laser intensity for 
elliptical polarizations and two differ·ent beam diameters d: d1 = 0.36 cm (circles) 
and d2 = 1.05 cm (squares). Linear regr·ession fits yield identical slopes but different 
minimum intensities. Relative laser intensities were 3 : 2. 

From eq. (5.18) and for d ;:::: 1 cm one expects a minimum linewidth of about 6 kHz. The 
discrepancy to the experimental value might originate in the approximations made in [TH080], 
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for instance, using third order perturbation theory only, assuming initial conditions of Pll = 
1, and neglecting Doppler shifts of the 9.2 GHz difference frequency. Similarly, according to 

eq. (5.18) one expects ,g~ThgJT = dl/d2, whereas the experimental results give ,gJThgJT = 

(0.42 ± 0.02) and dl/d2 = 0.34. 

As discussed in chapter 3.1, in order to both eliminate time-of-flight broadening and to profit 

from Lamb-Dicke narrowing independent of the vapour cell dimensions a buffer gas technique 

was chosen for the experiments of this thesis. 

5.3.2 ePT in the presence of buffer gas 

Buffer gas techniques also originate from the time of early optical pumping experiments: adding 

several mbar of an inert gas to the cesium vapour strongly impedes the free motion of the cesium 

atoms due to frequent collisions with the buffer gas atoms. Hence the atomic motion can be 
described as a diffusion process, and the effective interaction time with the light field is increased 

by several orders of magnitude. 

Although high gas kinetic cross sections are favourable for efficient confinement of the cesium 

atoms within the lasers beams it has to be taken into account that the collisions do not leave the 

internal atomic degrees of freedom unperturbed but also give rise to relaxation processes. Many 

experiments have been performed in connection with optical pumping experiments as discussed 

in review articles [HAP72, WAL97]. 

Apparently the dominant collisional relaxation processes can arise from sudden binary collisions. 

Since these collision occur during time intervals of the order of only 10-12 s the influence of ex­

ternal fields or hyperfine interaction on the electronic polarization during the collisional process 
is negligibly small. Therefore it is predominantly the electronic spin that is disturbed by colli­

sions. For the cesium-neon combination used here it has been shown that transfer between the 

finestructure doublets P3/2 and P1/2 does not play an important role such that relaxation mainly 
occurs within the D2 level configuration. Excited state depolarization cross sections are found 
to be of the same order of magnitude as the gas kinetic cross sections or even larger. For the 
cesium-neon combination experimental values of 29 A 2 were found for the P3/ 2 state in contrast 
to about 10-7 A 2 for the ground state ([HAP72] and references therein). Hence on average an 

atom undergoes 107 collisions before its ground state coherence is destroyed. 

Many of the basic phenomena experimentally observed in collisional ground state relaxation can 

be described with the help of the following Hamiltonian: 

Hint = MA(r)f. J + ,(r)N . J (5.19) 

where f and J are the total nuclear and electronic spins of the cesium atom and N is the rela­
tive translational angular momentum between the cesium and the neon atom. The first term in 

eq. (5.19) represents a change in hyperfine coupling due to the presence of the colliding partner. 
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When the atoms are far apart 8A(r) basically consists of an attractive electrostatic Van-der­

Waals potential. Hence 8A(r) is negative and the electron tends to be pulled away from the 

cesium nucleus thus decreasing the strength of the hyperfine interaction. For small interatomic 

separations the interaction potential is dominated by exchange forces between the valence elec­

trons of the two atoms resulting in repulsive forces, hence positive 8A (r) and increased hyperfine 
interaction. In total, a shift of the hyperfine splitting results which is either positive or negative 
depending on which of the two processes is the dominant one. Whereas for the light noble gas 

atoms He and Ne the exchange interaction dominates the situation is reversed for the heavier 

species Ar, Kr and Xe. As the polarizability of the noble gas atoms increases so does the con­

tribution of the Van-der-Waals interaction. Hence the observed pressure shifts of the cesium 
ground state hyperfine splitting are positive for He and Ne but negative for all of the heavier 

noble gases [HAP72]. The average pressure shift is given by 

1 T c 
8v = (8A) (I + -)-

2 Tf 
(5.20) 

where (8A) denotes the average change in hyperfine interaction during a collision, Tc the duration 

of a collision and Tf is the mean time between collisions. Since Tf is inversely proportional to 

the buffer gas pressure one expects linear pressure shifts which is in fact in agreement with 
experimental results. Even if (8A(r)) is too small to induce considerable population transfer 

between the hyperfine states it might nevertheless contribute not only towards pressure shifts 

but also towards collisional broadening. In this case the broadening would result from different 

phase shifts experienced by the atoms during a collision, the net effect of which is line broadening. 

However, experimental results suggest that the main broadening mechanism stems from the spin­

orbit interaction described by the second part of the Hamiltonian in eq. (5.19). The coupling 

between the electronic and translational angular momenta during the collision causes a very fast 

polarization randomization of the electron. Inspecting the depolarization cross sections for the 

noble gases [HAP72] again a tendency becomes apparent: the heavier the atom the larger the 
cross section because of their increasing polarizability. 

As the same ground state levels are involved both in dark state preparation and microwave 

transitions at 9.2 GHz one expects the dark resonance shift to reproduce former results from 
microwave experiments. 

The linewidth ,ePT of the dark resonance as a function of buffer gas pressure, on the one hand 

reduced by longer interaction times due to the diffusive motion of the atom, but on the other 

hand increased by collisional interactions as described above, can be understood with the help 
of a diffusion equation [VAN89, BRA96]' finally yielding the dephasing rate as 

(5.21) 

One has r diff oc D, where D = Dopo/p is the diffusion constant of ground state cesium atoms in 
neon at neon pressure p depending on the respective value Do at atmospheric pressure Po. r coli 
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denotes the collisional relaxation rate. If the dominant contribution towards relaxation stems 

from binary collisions the relaxation rate f eoll must be proportional to the number of colliding 

partners, i.e., the number density of buffer gas atoms: feoll = nCTeollV, Under simplifying 
assumptions and using the experimentally determined values Do = (0.153 ± 0.014) cm2 Is and 
CTeoll = (9.27 ± 0.90) . 10-23 cm2 [BEV71] (where the latter roughly agrees with the more recent 

calculations as reviewed in [WAL97]) the expected dependence of the dark resonance FWHM 

')'CPT ~ 2f12 (eq. (2.20) in the low intensity limit) on the neon pressure p reads: 

3mbar 1 1 
')'CPT = 1.3 . 10 --. - + 0.4 . . p. 

s ps· mbar 
(5.22) 

According to section 3.1 the contribution of ground state relaxation and dephasing rates due to 

Cs-Cs collisions, ')'Cs-Cs and rcs-cs respectively, is also of the order of several Hz and thus not 
necessarily negligible any more. Since the temperature was always kept constant one basically 

expects a further offset for ')'CPT. A more rigorous treatment would also have to take into account 
that eq. (2.20) is a rather rough approximation only and that the dark resonance linewidth 

generally depends in a more complicated manner on both ')'Cs- Cs and rcs-cs. For spin exchange 
processes (SE) the two rates are given by 

')'Cs-Cs = nVCTsE 

rcs-cs = RnvCTsE, (5.23) 

with R = (6J + 1)/(8J + 4) according to [VAN89]. But due to considerable discrepancies in 
the literature values for CTeoll one cannot expect to discern these additional influences here and 

therefore only ')'CPT according to eq. (5.22) is taken into account. 

In total, while for buffer gas pressures in the mbar range Cs-Ne collision hardly broaden the 
dark resonance line they have a dramatic effect on the optical transition. Estimates of the 
corresponding broadening and shift rates were given in eq. (3.11). 

5.3.3 Experimental results 

From the experimentally determined values of cross sections for cesium-noble gas combinations 

[HAP72] neon appeared as a promising species to be used as a buffer gas with high enough gas 
kinetic and low enough ground state relaxation cross sections. The experimental study of the 

dark resonance as a function of neon pressure was performed with the help of a cesium cell sealed 

by a glass valve. Hence different buffer gas pressures could be realized one after the other. The 
standard configuration was used, the intensity of the master and slave laser beams was kept at 

a constant ratio of 3 : 2, and the master laser was stabilized near the 3,4 crossover transition. 
For each buffer gas pressure a series of measurements was carried out in that the 0 - 0 resonance 
was recorded as a function of intensity. An FM-AM absorptive Lorentzian profile (see section 
5.2.1) was fitted to each spectrum to determine its line centre and width. 
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Figure 5.20: Full width at half maximum of the 0 - 0 component as a function of neon buffer gas 
pressure: experimental data (circles) and a zero parameter theoretical curve (solid 
line) . 

In fig. 5.20 the fitted FWHM is plotted against the buffer gas pressure, together with the theo­

retical curve given in eq. (5.22). For a zero parameter curve the agreement with the experiment 

is excellent. However, this agreement must not be overestimated because of the uncertainties in 
the cross section measurements. Since in principle the dark resonance considerably suffers from 

saturation broadening (see section 5.6) the experimental values present in fig. 5.20 correspond 

to a total intensity as low as 1O/-hW/cm2, i.e., about 1 % of the optical saturation intensity. 

The smallest dark resonance linewidth recorded so far is only 42 Hz. Fig. 5.21 shows both the 
absorptive and the dispersive part of the spectrum obtained from the numerical inversion of the 

experimentally recorded spectra. 
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Figure 5.21: Absorptive and dispersive part of a dark resonance line with only 42 Hz full width at 
half maxiTn'UTTt. The pedestal r'es'ulted fT'OTn line interjeT'ences at multiples of 50 Hz in 
the phase-locked loop. 

For each buffer gas pressure the line centre frequency was extrapolated to zero laser intensity 

in order to correct the results for the intensity dependent shift. Fig. 5.22 depicts the buffer gas 
induced shift of the dark resonance. A straight line fit yielded a shift rate of (480 ± 10) Hz/mbar 
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[BRA97] which is in agreement with a value of (452 ± 20) Hz/mbar determined for the corre­

sponding microwave transition [BEV81]. Note that the error given for the dark resonance shift 

results from the fit only. In principle spurious impurities present in the vacuum chamber used 

to refill the cell could have a considerable influence which was completely neglected here. 
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Figure 5.22: Position of the 0 - 0 dark resonance component extrapolated to zero intensity as a 
function of neon buffer gas pressure. 

As discussed above, the use of heavier noble gases would result in a negative pressure shift of 
the dark resonance, therefore a suitable combination of different buffer gases is expected to even 
cancel the pressure shift. However, as it will be discussed in chapter 6, precision measurements 

might require the use of a cesium/rubidium combination to compensate other frequency shifting 

effects . This further complicates the search for an ideal buffer gas combination cancelling or at 

least reducing the shift for both species with minimum broadening of the line. 

5.4 AC-Stark shift 

5.4.1 AC-Stark shift in pure cesium vapour 

According to the theory presented in chapter 3.4 the dark resonance line centre is expected to 
depend on laser intensities due to the AC-Stark shift. Although the measurable net effect is 

expected to be washed out by the thermal Doppler distribution residual intensity dependence 
was readily detected. 

The phase-lock set-up was used to measure the dark resonance position as a function of laser 
intensity for the standard configuration. The relative intensity of master and slave lasers was 

kept at a constant ratio of 3 : 2 whereas the total intensity was changed from 10 f-t W / cm2 to 

1.9 m W / cm2 with the help of variable attenuators. In order to retain the same overall power 
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on the photo diode the sum of attenuators always remained the same in that attenuators were 

simply moved from the front to the back of the cesium cell. For all measurements the master 

laser was stabilized near the 3,4 crossover transition on the absorption line involving the ground 

state F = 4 level. From the fit of an FM-AM line profile to each spectrum the line centre 
could be determined with typically a few Hz uncertainty. According to the discussion of dark 

resonance line shapes in chapter 2.2 the underlying line profile was assumed as the sum of an 
absorptive and a dispersive Lorentzian. Despite the precision of a few Hz it has to be noted 

that the absolute value of the dark resonance centre frequency could only be determined with an 

accuracy of a few kHz , due to the specifications of the frequency standard available. Therefore, 
a constant offset between experimental and theoretical values has no significance here and such 
an offset can be added to the theoretical curves so as to provide the best fit . 

Fig. 5.23 shows the resulting line centre dependence on intensity together with theoretical curves 

according to the model developed in chapter 3.4, where the value f12 = 4.2kHz was taken from 
the treatment of saturation broadening in section 5.6. 
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Figure 5.23: AC-Stark shift of the dark resonance: line centre as a function of intensity where 
the solid circles represent the experimental results. The solid line is calculated with 
the parameter values taken from the exper-iment (under the additional assumption of 
/ 12 = r 12) and the dotted lines correspond to calculations taking into account only 
one of the excited states. 

Although the zero parameter calculated Stark shift curve (solid line) roughly gives the correct 
order of magnitude it considerably differs from the data derived from the experiment. The latter 
intensity dependence appears basically linear, resembling the behavior of a two-level system 
under monochromatic illumination, whereas the calculated curve shows a more complicated 
behaviour. This nonlinear behaviour can at least be qualitatively understood with the help of 

the dotted curves that were calculated taking only one of the excited states F '=3 and F'=4 into 

account. As the optical detuning is positive with respect to the ground state F = 3 level, but 
negative with respect to the F = 4 level the respective light shift rates are opposed to each other. 
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Since the coupling strengths are different, as well, the shape of the two curves also differs. In 

the experiment only the superposition of the two upper state contributions is observable, hence 

each point on the total curve (solid line in fig. 5.23) corresponds to the minimum of a dark 
resonance line shape superposition with contributions from both excited states. From eq. (3.43) 
one calculates that the coupling strength for the A-system involving the upper state F' = 4 is 

about a factor of three stronger than that for the upper state F' = 3. Therefore it comes as 

no surprise that the resulting curve in fig . 5.23 is closer to the F' = 4 contribution than to the 

F' = 3 contribution, although for a detailed description it is essential to include both of them. 
Hence the remarkable shape of the total curve reflects the incoherent addition of the two excited 

states' contribution. Small deviations of the experimental curve from a straight line might show 
this very behaviour although the effect is hardly visible. 

When varying the parameters used in the calculation the resulting curves retain the same general 
shape but exhibit both different slopes and shifted maxima which might also be more or less 

pronounced. 

Slightly better agreement could only be reached with the help of rather arbitrary alterations, in 
that the light shift curves for the F'=3 and F'=4 transitions were calculated separately, using 
slightly changed parameter values, and the total curve was given as the weighted sum of the 

two contributions, with the weighting factor chosen for best fit. In doing so, different choices 

of parameters could effectively result in nearly the same theoretical curves. The introduction of 

such phenomenological factors cannot be justified within the theoretical model described so far 

because different weights of the two contributions should principally be accounted for by different 
coupling strengths and optical detunings only. Nevertheless, the need for such additional factors 

might result from loss mechanisms due to optical pumping to atomic states not involved in dark 

state preparation. Therefore altered population balances might be considered as yet another 
relevant aspect (also see the discussion in section 5.5). 

Furthermore, it is not obvious, to what extent changes of parameters might be justified as an 

effective treatment of experimental influences that have not been included into the calculation 

explicitly, such as the Gaussian transverse laser beam profile or time-of-flight broadening. For 

instance, it has not yet been investigated in enough detail , to what extent time-of-flight broad­
ening can be accounted for by stationary density matrix solutions with effective decay rates '/'12, 

f12, and whether the intuitive assumption of '/'12 = f12 is correct. 

In total, although a certain understanding of the dark resonance light shift can be gathered from 
the comparison with the theoretical model, the complicated experimental situation can so far 
not be modelled with the help of the simple approach discussed here. 
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5.4.2 AC-Stark shift in the presence of buffer gas 

A most welcome side-effect of a buffer gas is the concomitant reduction in the AC-Stark shift. For 

high enough intensity the AC-Stark shift is approximately a linear function of intensity, therefore 

for each buffer gas pressure a straight line was fitted to the data, the slopes of which are shown 
in fig. 5.24. Apparently, a few mbar of neon are sufficient to produce a dramatic decrease in 

slope, whereas a further increase of the buffer gas pressure does not lead to additional effects 

discernible in the linear approximation. The strong dependence on buffer gas pressure at low 

pressures resembles the behaviour found for the dark resonance linewidth (section 5.3.3) and 
saturation broadening (section 5.6). As this behaviour is attributed to collisional interaction 

with the buffer gas atoms it goes well beyond the simple three-level model description. For 

the precision measurements envisioned the decrease in AC-Stark shifts is yet another favourable 

aspect because it reduces effective line broadening or shifts due to intensity fluctuations. 
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Figure 5.24: Slope of the linear approximation for the AC-Stark shift rate as a function of buffer 
gas pressure. The solid line represents a phenomenological l/PNe fit. 
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5.5 Optical detuning 

Due to the AC-Stark effect the dark resonance position does not only depend on intensity but also 

on the optical detuning. With the VCSEL set-up, a cell with 72 mbar neon, and the standard 

configuration, the dark resonance position 6CPT was determined as a function of the optical 

detuning for different intensities, where 6CPT was defined as the minimum of the absorption 

profile. The results for intensities h = O.97mW Icm2 and h = 0.44mW Icm2 are shown in 
fig. 5.25(a), (b). Solid circles always correspond to the experimental situation where the carrier 

near-resonantly interacts with the F = 4 transition and dark states are prepared with the 

carrier and the + 1st-order sideband. In contrast, the open circles show the results for dark state 

preparation with the carrier and the -1st-order sideband, i.e., in this configuration the carrier 
is near resonant with the F = 3 transition. In all of the experiments the two sidebands could be 
characterized as either mainly contributing towards dark state preparation or as far off-resonant. 
For the interesting configuration where the detuning of both sidebands was roughly equal, i.e., 

for a carrier detuning near 4.5 GHz, the SIN ratio was too poor to record dark resonance spectra 

and investigate the behaviour in the presence of such a third frequency component . 
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Figure 5.25: eFT resonance position OCPT as a function of the optical detuning OL: (a) intensity 
h = O.97mW /cm2 , (b) intensity h = 0.44mW /cm2 . Dark resonances were prepared 
with the carrier frequency near-resonant with the F = 4-component and the + 1 st­
order sideband (solid circles), or with the carrier frequency near-resonant with the 
F = 3-component and the -1st-order side band (open circles) . Measurement points 
are connected to guide the eye. 

For the discussion of fig. 5.25 it has to be kept in mind that the dark resonance is shifted due 
to the presence of the buffer gas according to fig. 5.22. Uncertainties concerning the buffer gas 
pressure do not allow to determine the buffer gas shift with better than a few kHz accuracy, 

therefore it is not possible to define 6CPT = 0 in fig. 5.25. However, since the buffer gas pressure 
was kept constant, the frequency offset is the same in all cases. 
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The functional dependence of the dark resonance position on optical detuning is roughly point­

symmetric and a comparison of figs. 5.25(a) and (b) shows that for each of the two configurations 

(i.e., solid and open circles) within the rather large errors for Ih this symmetry does not depend 

too crucially on intensity. An inspection of eq. (3.47) reveals that nil (Ih , 6 R) is invariant under 

the transformation (1h,6R) I-t (-6£, -6R). Hence the simple three-level model in fact predicts 

point symmetry for the dark resonance position dependence on Ih, as it was demonstrated in 

fig. 2.5 as well. But the model developed in section 3.4.2 does not yield curves for which the 

characteristic dependence of 6cPT on the optical detuning is of the correct order of magnitude. 

Furthermore, the fact that the symmetry points for the two configurations are shifted by several 

hundreds of MHz cannot be explained with the help of a simple three-level model. Hence the 

experimentally recorded shifts might originate not only in the AC-Stark shift. Fitting dispersive 
Lorentzians to the curves of fig. 5.25 yields for the optical detuning of the symmetry points 6ros: 

(a) 6i;°s,a) = +220 ± 40 MHz, 

(a) 6i;°s,a) = -490 ± 36 MHz, 

(b) 6i;°s,b) = +177 ± 41 MHz for the solid circles and 

(b) 6i;°s,b) = -420 ± 46MHz for the open circles. (5.24) 

Comparison with the cesium level scheme of fig. 3.1 reveals an interesting feature of these shifts. 

From an intensity average one gets a frequency interval of 653 ± 41 MHz between the solid and 

open circles curves, which is roughly equal to the maximum hyperfine splitting of the excited 
state. Hence one can suppose that for large enough optical detuning all of the excited state 

hyperfine components might play a major role for the CPT resonance dependence on 6£, even 

the F' = 2,5 levels which have not been taken into consideration explicitly so far. Since these 

effects appear to be hardly affected by intensity, it is well justified to treat intensity and detuning 
dependence independently of each other. 

In order to further characterize the influence of the optical detuning both the CPT linewidth 
and amplitude were considered. Fig. 5.26 shows the functional dependence of the linewidth on 

6£ for two different intensities, where the notation is the same as in fig. 5.25. 

Apart from the character of the curve's symmetry (axial symmetry instead of point symmetry, 

again as expected at least qualitatively from fig. 2.5) the main features of the functional de­

pendence on the optical detuning correspond to the behaviour of the line position in fig. 5.25. 

Again, the symmetry of the curves roughly resembles the behaviour expected for a three-level 
system, whereas the symmetry point shifts between the two curves clearly does not. Fitting 
absorptive Lorentzian profiles to all curves yields for these symmetry points 6iwHM : 

(a) 6lFWHM,a) = +143 ± 45 MHz, (b) 6?,WHM,b) = +165 ± 43 MHz, for the solid circles and 

(a) i5?,wHM,a) = -444 ± 30 MHz, (b) i5?,WHM,b) = -472 ± 36 MHz, for the open circles. 

(5.25) 

Within the relatively large uncertainties these shifts agree with those determined for the dark 
resonance position in eq. (5.24). In contrast, the dark resonance amplitude dependence on the 
optical detuning is different, as shown in fig. 5.27. 
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Figure 5.26: Dark resonance linewidth as a function of the optical detuning for intensities (a) 
h = 0.97 m W / cm 2 , (b) h = 0.44 m W / cm 2 . Solid circles correspond to an optical 
carrier frequency near the F = 4 transition whereas open circles describe the situation 
for the optical carrier frequency near the F = 3 transition. Lorentzian fit curves are 
included for all configurations. 
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Whereas the curve symmetry for amplitudes is about the same as that for the linewidths, 

the curves for the two different configurations (solid and open circles, respectively) are hardly 

shifted with respect to each other. In this case, from the fit of Lorentzian profiles one gets for 
h . £Am~ t e symmetry pomts U L : 

(a) 61Ampl ,a) = -103 ± 33MHz, 

(a) 61Ampl ,a) = -226 ± 27MHz, 

(b) 6~mpI,b) = - 164 ± 30 MHz, for the solid circles and 

(b) 61Ampl ,b) = -237 ± 36 MHz, for the open circles. (5.26) 

Comparison with eqs. (5 .24), (5 .25) also shows that the values for 6tmpl roughly lie halfway 

in between the frequency interval spanned by the values of both 8ias and 8rWHM for the two 

different configurations. As for the linewidths 'Yh of the Lorentzian fit curves for the experi­
mental data of figs . 5.24, 5.26 and 5.27, another interesting aspect arises. Since the intensity 

dependence of 'YbL is negligible one can consider intensity averages and gets: 

(pas) 
'Yh = 587 ± 40MHz for the solid circles and 

(pas) _ 
'YbL - 569 ± 53MHz for the open circles; (5.27) 

(FWHM) _ 
'YbL - 1052 ± 93MHz for the solid circles and 

(FWHM) 
'YCh = 1336 ± 100 MHz for the open circles; (5.28) 

(Ampl) 
'YbL = 641 ± 66MHz for the solid circles and 

(Ampl) _ 
'YbL - 790 ± 59MHz for the open circles. (5.29) 
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Figure 5.27: Dark resonance amplitude as a function of the optical de tuning for intensities (a) 
h = O.97mW/cm2 , (b) h = 0.44mW/cm2 . Solid circles correspond to an optical 
carrier frequency near the F = 4 transition whereas open circles describe the situation 
for the optical carrier frequency near the F = 3 transition. Lorentzian fit curves are 
included for all configurations. 

In contrast to the symmetry point dependence, there appears to be some agreement between 
1'~~os ) and 1'gmPl), whereas 1'~~WHM) is nearly twice as large. Comparison with eq. (3.11) shows 

that for a neon pressure of 72 mbar collisional broadening of the optical transition is estimated 

as 620 MHz which is roughly in agreement with 1'~~os) and 1'~~mpl). Comparison with fig. 2.5 

indicates that under certain circumstances a larger value for 1'~~WHM) than for 1'~~mpl) might 
already arise from the simple three-level theory as well. On the other hand, combining the 

excited state hyperfine splitting with the homogeneous collisional linewidth one also arrives at 
. (FWHM) 

the same order of magllltude as 1'OL 

A detailed model for the underlying physical mechanisms manifested in the dark resonance 
dependence on OL does not yet exist. One would have to consider a multilevel system taking 

into account the excited state hyperfine splitting. Furthermore, a more detailed knowledge of the 

excited state modification due to collisional interaction would certainly be required. Therefore, 

only a few hypotheses shall be discussed here. 

An illustration of the results of this section is given in fig. 5.28 which summarizes the dark 

resonance position, linewidth, and amplitude dependence on the optical detuning. For each 

configuration the Lorentzian profiles with parameters determined by the fit to the data of 
figs. 5.24(a), 5.26(a), 5.27(a) are sketched. 

In a first approximation one might assume that buffer gas collisions mainly cause a total shift of 
all hyperfine levels as well as dephasing and relaxation between the levels. If relative collisional 

shifts between different hyperfine levels and state mixing remains negligible, one can compare the 

results of figs. 5.24, 5.26, 5.27 with the usual cesium level scheme, as it is indicated in fig. 5.28. 
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Figure 5.28: Lorentzian fit curves for the dark resonance FWHM, position and amplitude depen­
dence on the optical detuning. The vertical dashed grey lines roughly correspond to 
the excited state hyperfine splitting, collisionally shifted as a whole by ~ -150 MHz. 
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For a total shift of the optical transition of approximately -150 MHz the maximum linewidths 

in fig. 5.28(a) are reached if the carrier frequency is resonant with the F = 4 N F' = 5 or 

F = 3 N F' = 2 transition, respectively. Therefore one might suppose that apart from mere 

power broadening, which should reach a maximum for zero optical detuning (see 2.5), losses 

for dark state preparation due to resonant interaction of the strong carrier component with 
the transition that does not contribute towards the dark state play an important role. Due 
to electric dipole selection rules this is the case for the F' = 5 level, if the carrier frequency 
near-resonantly couples to the F = 4 ground state component, and for the F' = 2 level, if the 

carrier frequency couples to the F = 3 component. Under these assumptions, the loss channels 
are driven effectively as long as the carrier frequency lies within the homogeneous linewidth of 
the respective transition. This behaviour is only approximately found here, as the linewidths of 
eq. (5.28) are slightly broader than the expected collisionallinewidth of the optical transition. 

Pursuing these ideas one anticipates furthermore that within a given A-system the dark res­

onance amplitude increases the nearer the carrier frequency gets to one-photon resonance. 
Fig. 5.28(c) shows that this is, in fact, the case. Here, the linewidths agree well with the colli-
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sionallinewidth of about 620 MHz. Even the small shift between the curves corresponding to the 

F = 4 and F = 3 components might be explained with this model. From the coupling strengths 
of the unperturbed cesium atom in eq. (3.43) one finds stronger coupling on the F = 4 M F' = 4 
transition than on the F = 4 M F' = 3 transition, and stronger coupling on the F = 3 M F' = 3 

transition than on the F = 3 M F' = 4 transition. Hence for the F = 4 component one assumes 

that the main contribution stems from the A-system (IF = 4,0), IF' = 4, 1) , IF = 3,0)) whereas 
for the F = 3 component it is the A-system (IF = 3,0), IF' = 3,1), IF = 4,0)). Comparison with 

fig. 5.28(b) shows, in fact, that the curve for F = 4 (solid line) peaks near the F = 4 M F' = 4 
transition and the curve for F = 3 (dotted line) peaks near the F = 3 M F' = 3 transition, as 

expected. 

In total, according to the experimental results of this section and the explanations given, the 

influence of the complete excited state hyperfine multiplet appears to be well resolved in the 

CPT resonance dependence on the optical detuning h. Whereas in the preceding sections 
qualitative understanding of experimental results could be reached without having to explicitly 
include the F' = 2,5 levels into the theory, this appears to be valid only as long as h remains 

roughly constant. Otherwise both the CPT amplitude and linewidth dependence on h reflect 

resonant one-photon couplings. If the strong carrier frequency is resonant with an excited level 
not contributing towards dark state preparation this results in strongly driven loss channels, 
i.e., increased CPT linewidths. On the other hand, resonant excitation of a A-system leads to 

maximum CPT amplitudes. 

Yet, there is also a number of features evading a straightforward explanation within this simple 
model. For instance, it is not clear, why the symmetry points of the dark resonance position 

dependence on h (fig. 5.28(c)) coincide with those ofthe linewidth dependencies, if the 1inewidth 

is dominated by loss mechanisms. Moreover, the correspondences discussed above agree with 

the experimental data only if the total shift of the optical transition is assumed smaller than 

the prediction of approximately -250 MHz from eq. (3.11). But as the latter results from low 
resolution measurements only, this discrepancy can not yet be decided upon. As for the dark 

resonance experiment, the main difficulty arose from the fact that due to the large VCSEL 
linewidth the optical detuning could only be determined with an uncertainty of about 100 MHz. 
This might be improved dramatically if power line interferences can be removed from the VCSEL 

current because then the VCSEL linewidth should reduce to near its intrinsic value of about 

20 MHz. Then it should also be possible to calibrate the optical frequency with a much better 
accuracy from the beat note with another stabilized laser reference frequency. A good test of the 
hypotheses discussed above might be provided if the dependence of the above effects on relative 
laser intensities were studied. If the underlying mechanisms really consist of losses one expects 
the shifts of fig. 5.28 to decrease dramatically for nearly equal relative intensities, i.e., for nearly 

equal coupling strengths on the 4 M 5 and 3 M 2 transitions. 
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5.6 Saturation broadening 

As indicated in chapter 2.2 the dark resonance linewidth ')'CPT exhibits a strong dependence 

on intensity. Fig. 5.29 shows the dark resonance full width at half maximum as a function of 

the master laser intensity measured with the phase-lock set-up for three different buffer gas 
pressures. As usual, the standard configuration was used and the relative intensity of the two 

lasers was kept at a constant ratio of 3 : 2. Then the fitting procedure for an FM/ AM line profile 

consisting of the sum of an absorptive and a dispersive Lorentzian allowed to determine the 
respective parameter set for each experimental spectrum. Finally, the dark resonance linewidth 
was determined as the FWHM of the demodulated line profile given by the sum of the absorptive 

and dispersive Lorentzians with the fitted parameters. 
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Figure 5.29: FWHM of the dark resonance as a function of intensity for three differ'ent neon buffer 
gas pressures. 

For high enough intensities one finds a linear dependence with a slope declining for increasing 

buffer gas pressure. For each buffer gas pressure a straight line fit yielded the line broadening 

rates (kHz/ ~~) which are depicted in fig. 5.30 as a function of buffer gas pressure. 

From the model leading to eq. (2.20) a linear dependence of the dark resonance linewidth on 
intensity is in fact expected. But as that model is based on assumptions which are not ful­

filled in the experimental situation (e.g., equal Rabi frequencies) it is hardly possible to draw a 

quantitative comparison between theory and experiment . Therefore, the model discussed for the 

AC-Stark shift was applied to saturation broadening as well, and the full width at half maximum 
was determined directly from the line shapes calculated according to eq.(3.39) . For any choice of 
parameters within the correct order of magnitude a linear dependence results but quantitative 
agreement with the experimental data cannot be reached for a set of parameters consistent with 

the experimental conditions. Whereas the constant offset almost exclusively depends on the 
value for f12, the linear slope is mainly determined by the absolute scaling factor for the Rabi 
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Figure 5.30: Saturation broadening rate of the dark resonance as a function of buffer gas pressure 

frequencies. All other parameters, such as the ratio r12/f12 and the optical detuning 6L , only 

have a minor influence. 

In the absence of buffer gas a straight line fit to the experimental data yields 

rePT = (9.60 ± 0.06) kHz + (12.9 ± 0.1) kHz/~~ ·Imaster. For the best fit to these values the 

theoretical model gives 2f 12 = 8.4 kHz and an artificial scaling factor for the absolute Rabi 

intensity of 1/40. Whereas f12 is of the same order of magnitude as expected from time-of-flight 
broadening the scaling factor for the Rabi frequencies cannot be understood. Inserting 'correct' 
Rabi frequencies yields a far too strong saturation broadening behaviour: the broadening rate 

is wrong by a factor of about 35, as opposed to the low intensity limit which roughly remains 

the same. In contrast to the minor discrepancies between theory and experiment arising from 

the discussion of the AC-Stark shift, the disagreement encountered here shows that this theory 
does not lead to quantitative understanding of the dark resonance power broadening. 

As for the influence of the buffer gas , one can compare the experimental results depicted in 
figs. 5.30 and fig. 5.20. Both the power broadening rate and the dark resonance linewidth 

remain roughly constant over the same range of intermediate buffer gas pressures, whereas in 
both cases major changes occur for smaller and larger pressures. This indicates that the dark 

resonance power broadening behaviour depends in a complicated manner on the experimental 
conditions. If it were dependent on the optical decay rates only, one would expect a fairly 

uniform dependence on the buffer gas pressure according to the collisional broadening of the 

excited states. Instead, the two characteristic processes of line narrowing due to the onset 

of atom diffusion at low pressures and collisional ground state relaxation at higher buffer gas 
pressures manifest themselves in both the dark resonance linewidth and the power broadening 
behaviour. Similarly to the treatment of line narrowing with the help of diffusion theory a more 
adequate model for power broadening still has to be sought. 
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For a further investigation of these questions the power broadening behaviour was examined 

for the set of experimental and theoretical curves illustrated in fig. 5.18. The neon pressure of 

72 mbar corresponds to the intermediate buffer gas pressure range where for the dark resonance 

time-of-flight broadening is well suppressed and collisional broadening is still negligible. In 

contrast to the measurements with the phase-lock set-up discussed so far in this section, the 

use of the VCSEL set-up entails that the intensities of the bichromatic field strongly differ from 
each other. Hence the linear power broadening behaviour of eq. (2.20) need not necessarily hold 

any more. 
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Figure 5.31: Dark resonance power broadening for 72 mbar neon and the configuration of fig. 5.18: 
experimental data (solid circles) , calculations for two different treatments of the Lamb­
Dicke effect (solid and dashed lines) 

Fig. 5.31 shows the resulting dependence of the dark resonance linewidth on intensity, where the 

solid circles represent the experimental values. The solid line corresponds to the calculation at 
first ignoring the Lamb-Dicke effect. Since under this assumption the linewidth remains much 

too broad (see fig. 5.18(c)) a total of 9.5 kHz was subtracted from each calculated linewidth. This 

might be considered as yet another approach towards the treatment of Lamb-Dicke narrowing. 

The dashed line corresponds to the calculation leading to fig. 5.18(b), i.e., ignoring Doppler­

broadening at the 9 GHz frequency, without any further treatment. Whereas the slope of the 
overall dependence is in fact reproduced correctly by the dashed line, the solid line correctly 

describes the non-linear behaviour at low intensities. Hence, despite the fact that both of 
the two approaches towards Lamb-Dicke narrowing consist of rough approximations only, the 
agreement with the experimental data is even better than for the unbuffered case. Whereas an 
additional factor of 35 for intensity was needed to reproduce the power broadening behaviour 
in the absence of buffer gas, here it is only a factor of 0.5. The enormous discrepancy between 
these factors might again be a hint at the influence of time-of-flight effects dominating dark 
state preparation in the unbuffered case such that the stationary approach applied here would 
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not be adequate. According to fig. 5.30 the factor would be more different from unity for higher 

buffer gas pressures as well, which could then be attributed to the fact that the ground state 

coherence directly gets disturbed by collisions. On the whole, the best agreement is reached 

for intermediate buffer gas pressures where dark state preparation is essentially free of both 
influences. But this conclusion can certainly not yet be considered final because - as discussed 

throughout this chapter - the description of the dark resonance dependence on buffer gas 

collisions, laser linewidth, optical pumping etc., is phenomenological in some parts and guided 

by physical intuition and not mathematical rigour. 

5.7 Optical pumping 

Optical pumping is not investigated in detail in this thesis. As the ePT model developed in 

chapter 3.3 (based on equal population of Zeeman levels, i.e., the absence of optical pumping 

between those levels) shows excellent agreement with the experimental results, the concern of 

this section is only to demonstrate that population redistribution can be detected at all. The 

effects of optical pumping within a multilevel system exposed to light irradiation have been 
studied for several decades, for review articles see, for instance, [HAP72, WAL97] . In the case of 

the hyperfine split cesium D2 line both depopulation and repopulation pumping occurs . Whereas 

repopulation pumping transfers excited state polarization to the ground state via spontaneous 

emission, the former results from different excitation rates out of the ground state Zeeman 

levels and thus gets dominant if the excited state polarization is instantaneously destroyed, 
e.g., by buffer gas collisions. The use of a+ a+ polarized light tends to polarize the atom via 

optical pumping between Zeeman levels. Due to the respective coupling strengths under many 

circumstances the net effect is population redistribution towards higher values of mF, although, 

e.g., if depopulation pumping is dominant, the net effect might well be different for F = 4 and 
F = 3, as calculated by a rate equation model for atomic populations [LAN97]. 

The optical pumping rate ,(p) is given by ,(p) = fP hhorn, where 9 is the Rabi frequency for 

the respective transition and ,horn the homogeneous linewidth of the excited state. Thus on 
Raman resonance there are two rivalling processes: direct optical pumping into a coherent dark 
state at a rate ,(ePT) such that the atoms are lost for other processes, and Zeeman pumping via 

absorption-emission cycles accumulating atomic population in higher mF states at a rate ,(p) 

before the atoms finally end up in a coherent dark state. The contributions of both processes 

become apparent from the distribution of the relative strengths of the ePT Zeeman components. 
Fig. 5.32 shows relative strengths of ePT Zeeman components for the standard configuration 
in a cell containing 5 mbars of n~on for two different total intensities h = 1.8 m W /cm2 , h 
O.2mWjcm2 . 

For h the spectrum's centre of gravity is clearly shifted towards higher mF values whereas for 

h there is reasonable agreement with the the calculated spectrum (solid line) according to chap­
ter 3.3. Note that the asymmetry of a spectrum is in itself not necessarily a signature of optical 
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Figure 5.32: Relative strengths of ePT Zeeman components for the standard configuration, a ce­
sium cell also containing 5 rnbars of neon, and total intensities h = 1.8 rn W /crn 2 

(open circles), 12 = 0.2 rn W /crn2 (solid circles). The solid line represents a calcula­
tion according to chapter 3.3. 
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pumping because it could also be produced by different coupling strengths. For instance, com­
parison of fig. 5.7 and fig. 5.2 shows that for the standard configuration the calculated spectrum 

is symmetric in the buffer gas case, whereas in the absence of buffer gas it is asymmetric, with 

increasing peak strengths for higher values of mF. 

For fixed intensity ,(p) is reduced with increasing buffer gas pressure as ,horn increases. Fur­

thermore, for increased collisional depolarization of the excited state, depopulation pumping 

gets more important which leads to much less pronounced population redistribution. From 

these qualitative remarks one expects Zeeman pumping to become considerably less effective for 
higher buffer gas pressure. In fact, for high buffer gas pressures deviations from the symmetrical 
spectrum as in fig. 5.2 could hardly be detected. 
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6 Precision measurements 

6.1 Magnetometry 

Currently the sensitive detection of small magnetic fields finds many applications and each 

appears to have a different method specialized to meet particular needs. Whereas biomedical 
applications are almost exclusively the realm of so-called SQUIDS, optical pumping magnetome­
ters (OPM) are frequently used in geophysics and archaeology [BEC95]. Sensitivities as low as 
a few IT / v1fz" are reported for both devices [ALE94, V oD92]. 

Still it is for a number of reasons that magnetometry with coherent dark states appears to be 

very promising. First of all, the practical implementation of a dark state magnetometer does not 

have some of the drawbacks of the other devices. In contrast to SQUID detectors no cryogenic 

cooling is required. And if compared to optical pumping magnetometers the advantage of an 

all-optical set-up becomes apparent: in contrast to the typically cm-sized microwave interaction 

region a spatial resolution in the micrometre range could in principle be reached. Furthermore, 
the detector head does qot have to consist of any metal components but could consist of a 
(miniature) sealed glass cell and optical fibres only. Therefore stray fields from electric wires 

do not appear and the sensor head can even reach points that are less easily accessible, e.g., 

in medical applications, since its only connection to the rest of the set-up consists of a thin 

optical fibre. Furthermore, the successful preparation of dark states using VCSELs allows for a 
miniaturized device which is mechanically stable and needs battery supply only. 

Apart from these practical considerations a fundamental advantage of a dark state magnetometer 
over an OPM has been discussed, where for a set-up of Mach-Zehnder type reduced susceptibility 
to power broadening and sensitivities as low as 0.1 IT for 1 s averaging time were predicted 
[Scu92, FLE94]. 

However, apart from the experiment described below [N AG98] so far no experimental implemen­

tation of a coherent dark state magnetometer has been realized. It also has to be noted that the 

configuration described below is completely different from the one proposed in [Scu92, FLE94] 
where higher optical power and atomic densities are required. 

For the sensitive detection of small magnetic fields the signal of interest has to be extracted 

from the background of ever-present magnetic noise signals. Such noise components arise, e.g., 

from laboratory electronics or fluctuations of the geomagnetic field with typical flux densities 

of several nT for Fourier components in the kHz range. Several methods can be thought of to 
overcome this difficulty. · The sensor could be shielded from external magnetic fields with the 
help of a high-quality fJ,-metal shielding. However, for practical applications one does not always 
want to perform measurements inside an extremely well shielded environment only. Measuring 
DC fields in the presence of large noise contributions can be facilitated with the help of so-called 
gradiometric arrangements of SQUIDs [ROM82]. For single Fourier components of AC fields 
phase sensitive detection with a lock-in amplifier can be used as described below. 
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6.1.1 Experimental realizations 

As explained in detail in chapter '5.1 the presence of a magnetic field destroys the Zeeman 

degeneracy of the dark states which are shifted at a rate given by the Breit-Rabi formula, 

where the relative height of the respective Zeeman components depends on the geometry of 

field direction and laser polarizations. In principle, coherent dark states can be used for the 

determination of magnetic fields of arbitrary strength. Therefore one might distinguish between 

two cases: 

Strong field If the magnetic field is strong enough to resolve the individual Zeeman com­

ponents a fit of the peak positions according to the Breit-Rabi formula results in an absolute 

value for the magnetic field. As long as the field is small enough for (F, mF) to remain good 

quantum numbers for all atomic levels involved, which is usually the case for flux densities up to 

a few mT, the magnetic field strength only changes line positions whereas the line shape of the 

individual Zeeman components remains unaffected. Hence the relative accuracy is independent 

of the magnetic field strength. However, since the experiment only allows to infer the parameter 

x = (gJ - g[ )P,BB In, the determination of the absolute field strength requires knowledge of g­

factors which are known only to within 1.3· 10-6 [WHI73], the accuracy is thus limited. Fig. 6.1 

shows an example of a dark resonance spectrum in a strong field recorded with the phase-lock 

set-up from which the respective flux density was determined as B = (21.2265 ± 0.0006) p,T with 

a relative uncertainty for the numerical fit parameter x of about 3 . 10- 5 . 
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Figure 6.1: Zeeman-split dark resonances (standard configuration and 87 mbar neon) from which 
the flux density could be determined with better than 3· 10-5 relative uncertainty. The 
short vertical lines indicate the fitted resonance positions. 

Weak field If for a given linewidth of the dark resonance Zeeman components the magnetic 

field is not strong enough to resolve single components a slightly more complicated situation 

results, and the information on magnetic field strength has to be drawn from changes in line 

shape instead of line position directly. 
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In the following only the experimentally tested case of phase-locked lasers with equal circular 

laser polarizations and an unbuffered cell is considered. The cesium cell could be placed inside 

a double-layer f-.l-metal cylinder with an estimated shielding factor of about 1000. Since the 
magnetic shielding available was by far not good enough for the envisioned precision of the 
experiment one had to retreat to a modulation technique in order to filter the signal out of 

a large background noise. Therefore only Fourier components of a magnetic field oscillating 

at a given frequency could be detected in this experiment . Instead of the usual modulation 

of the slave laser injection current this time the modulation in the kHz range was applied via 

an oscillatory magnetic field. This could be accomplished either with the help of a wire in a 

single-turn Helmholtz configuration wrapped directly around the cell, or by a current coil placed 

at a certain distance from the cell. 

The alternating magnetic field B(t) = Bconst + Bmod cOS(Wmodt) modulates the frequency sepa­
ration between the dark resonance Zeeman components. The photodiode recording the trans­

mission signal behind the cesium cell of length l effectively averages over all optical and r. f. 

frequencies beyond its response bandwidth such that the photo current is finally given by 

I(v, B(t)) = Io e-28(v,B(t» . (6.1) 

The resulting line shape as recorded by a lock-in amplifier is proportional to the derivative of 
the transmission signal: 

dI(B) I S(v, Bconsd = Bmod dB 
Bconst 

(6.2) 

For a longitudinal magnetic field <5 (v, B (t)) is represented by a superposition of seven Lorentzian 

components with relative strengths <5j = (0.47,0.68,0.88,0.91,1,1,0.75) calculated from 
eq. (3.30): 

j=3 

<5(v, B) = <50 L <5. bCPT/2)2 
j=-3 J (v - Vo - 2 j e B(t))2 + bCPT/2)2 

(6.3) 

with a shift rate e ~ 3.5 Hz/nT according to eq. (3 .16) . Hence the signal can be calculated as: 

S(v B ) ex B e-28(v,Bconst) ~ !:. j (v - Vo - 2 j ~ Bconsd 
, const mod ~ uJ ( . )2 ( / )2 . 

j=-3 v - //0 - 2 J e Bconst + ,CPT 2 
(6.4) 

For Bconst 01 ° the line shape shows an asymmetry depending on Bconst. This allows to actually 
use the method even in the weak field limit because it is possible to determine a constant offset 
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field without the need to resolve the Zeeman components. Furthermore, for zero offset field and 

OJ = L j (as it is the case for high buffer gas pressures) the lock-in signal is identically zero such 

that this method is not always applicable. Finally, the total signal strength is expected to be 

proportional to the amplitude of the alternating magnetic field Bmod. This was demonstrated in 

a series of measurements where a transverse field of several hundred pT amplitude oscillating at 

Vmod = 8 kHz was applied. The field was generated by a current coil placed at a distance of 1 m 
from the cell for sufficient homogeneity. Since no shielding or DC compensating field was used 

the dark resonance was split into eight components and for each amplitude Bmod the total signal 

strength S(Bmod) was determined as S(Bmod ) = J Rdv, with R = JX2 + y2 calculated from 

the in-phase and quadrature components of the lock-in signal. Fig. 6.2 confirms the expected 

linear dependence. 
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Figure 6.2: Total signal strength as a function of the oscillatory magnetic field amplitude exhibit­
ing the expected linear dependence 

In order to evaluate the sensitivity of such a device the cell was placed inside the shielding 
cylinder and the alternating field was applied via the Helmholtz wire loops. The magnetic field 

thus produced was calibrated in the /-LT range where the flux density was determined directly 

from the dark resonance Zeeman splitting. Agreement was reached with the calculated values . 

Fig. 6.3 shows a typical spectrum obtained for an amplitude of Bmod = (7.2 ± 0.8) pT at a 
modulation frequency of 8kHz together with a fit according to eq. (6.4). Each point of the 
experimentally recorded spectrum resulted from averaging over 0.6 s. The DC offset field was 
determined from the fit as Bconst = (31 ± 3) nT which is consistent with the geomagnetic field 
attenuated by the estimated shielding factor. The fitted linewidth f::lv = 40 kHz is also III 

agreement with the estimated power broadening for a laser intensity of about 1 m W I cm2 . 

Because of the linear dependence of the signal strength on Bmod it is possible to extrapolate the 
minimum detectable oscillatory amplitude f::lBmin from the recorded spectra and the respective 
signal-to~noise ratios SIN: f::lBmin = Bmod/(SIN). The noise was taken as the residual rms value 
of the difference between the fit function and the experimental data. With SIN ~ 15 for the 
spectrum of fig. 6.3 extrapolated sensitivities below 500 IT result for modulation frequencies of 



92 6. PRECISION MEASUREMENTS 

0.20 .----r-...,......-.----r-...,......----,;----,--...,.-----,;-----, 

~ 0.15 
c 
:::J 

.D 
~ 0.10 

ro 
c 
0) 

'00 0.05 

• 

0.00 ~.--~--~--~~~~--~--~--~--~~ 
-20 -10 o 10 20 30 

frequency detuning (kHz) 

Figure 6.3: Dark resonance line shape (R-component of the lock-in signal) for field modulation at 
Wmod = 8 kHz with amplitude Bmod = 7 p T. The solid line is a numerical fit for R 
based on eq. (6.4) . 

5 -10 kHz. Although this method is based on the detection of changes in line shape as a measure 

of changes in magnetic field strength one does not always have to record a whole spectrum. For 

instance, monitoring the amplitude of the two maxima allows to determine AC field changes 

from a change of the overall amplitude whereas DC field changes can be inferred from a change 

in relative height of the two maxima. More details on these magnetometry measurements can 

be found in [GRA97J. 

By definition, i.e., the restriction to a longitudinal field only, the methods described here are 
examples of scalar magnetometers which are sensitive to line positions depending on IEI only. 

But principally one might also think of a vector device exploiting the field directional depen­

dences discussed in chapter 5.1. Recently, a certain configuration of a dark resonance vector 
magnetometer was analysed theoretically [LEE98J. 

In comparison with typical field strengths and sensitivities sketched in fig. 6.4 the sensitivity 
obtained so far has to be extended towards lower frequencies in order to compete with the 

existing devices for interesting applications, e. g. in medicine. Although the absolute value of the 

field amplitudes detected can already be compared to typical performances of optical pumping 

magnetometers one has to keep in mind that the 1/f noise components increase considerably 
for the interesting range of low frequencies. Therefore a direct comparison is not yet possible. 

However, the results obtained here are nowhere near the maximum sensitivity achievable. First 
of all , due to the particular features of eq. (6.4) only unbuffered cells entailing broad ePT 
linewidths could be used. Secondly, from the shielding factor of about 1000 the AC component 
of the geomagnetic field is attenuated only to about a few pT. Therefore hardly any improvement 
could be expected without switching to a much better magnetic shielding which was not available 
at the time. 
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Figure 6.4: Typical field strengths of various sources, and typical sensitivities of selected magne­
tometers, taken from [HAM93]. The symbols at 8 kHz Fourier frequency represent the 
first test experiment (circle) and its extrapolation to a SIN ratio of unity (cross). 
'Rb/Xe' stands for a particular type of optical pumping magnetometer [WAc97]. If 
the dark state magnetometer could be optimize for the shaded region it would be a 
novel compact room-temperature device, e.g., for the measurement of magnetic fields 
of the beating heart. 
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As discussed in section 6.1.1 the ultimate accuracy for magnetic flux density measurements could 

be increased if the g-factors were known with higher accuracy. Furthermore, knowledge of the 
g-factors also allows to test electronic wavefunction calculations, which, in turn, are important 
for experiments on the violation of fundamental symmetries in atoms [Bou74, Woo97]. The 

determination of g-factors is based on the sensitive detection of magnetic fields where current 

knowledge for cesium stems from magnetic resonance experiments [WHI73]. Following the dis­

cussion in section 6.1 a CPT-based device should exhibit similar advantages for the determination 

of g-factor ratios as it is supposed to do with respect to magnetometers. 

In the following, two proof-of-principle experiments are reported which exploit different exper­

imental configurations. In both cases it has to be kept in mind that the presence of a buffer 

gas has a significant influence on the measurements. As discussed theoretically in [HER68], 
collisional interaction with the buffer gas atoms causes g-factor shifts. Therefore optimization 
of g-fador ratio measurements would have to include a detailed analysis of the dependence 
on buffer gas pressure. Moreover, as the absolute position of the CPT resonance cannot be 
determined with high enough accuracy (mainly due to insufficient knowledge of the buffer gas 

pressure and thus the corresponding shift according to fig. 5.22) the dark resonance position is 
yet another parameter to be obtained from a fit to the data. 
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6.2.1 g-factor ratios from low resolution spectra 

As seen in fig. 6.5, for equal circular laser polarizations and an oblique magnetic field the 

dark resonance splits into 15 Zeeman components, in agreement with the theoretical model of 

chapter 3.3. Even-numbered components correspond to couplings with 6.m = ±1 and odd­

numbered components to those with 6.m = o. 

~ 
c 
~ 

.0 .... 
~ 
c 
o 

:;:::::; 
Cl. .... 
o 
(fJ 
.0 
ctl 
~--r--.--.-~--'-~r--r--r--.--.--'--'-~ 

-300 -200 -100 0 1 00 200 300 
frequency shift [kHz] 

Figure 6.5: Dark resonance split into 15 Zeeman components in an oblique magnetic field with 
B = ILl/-" T and equal circular polarizations. 

In this experiment the splitting due to the nuclear contribution discussed in section 5.1.4 was 

not resolved. Since the linewidth of each Zeeman component was much larger than the expected 

splitting due to the nuclear contribution (by about a factor of 40) it was sufficient to neglect the 

splitting and to take into account the stronger components only. Recalling the expression for the 

dark resonance Zeeman shift of eq. (3.15) and including an additional shift op (e.g., accounting 
for pressure shifts) one finds 

(6.5) 

Hence a fit for the line positions with 6.m = 0 yields the parameters x(fit) = (gJ - gI )JLBB j h6.hfs 

and op. With x(fit) and op fixed the position of the resonance lines with 6.m = ±1 can be used 
to determine a(fit) = gIJLBB jh such that 

gI 

gJ 

1 
X ( fit) . 

1 + 6.hfs a ( fi t ) 

Thus for the spectrum of fig. 6.5 one obtains 

gI = -1.87(11) .10-4 

gJ 

(6.6) 

(6.7) 

which agrees with the acknowledged value of -1.9917400(26) .10-4 [WHI73] , although with much 
lower precision. But this does not come as a surprise because the experiment has by far not been 
optimized yet. In fact, it is only due to the high precision of the dark resonance spectrometer 
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that the influence of the tiny nuclear magnetic moment can be detected already at a field of 

11 p,T. Straightforward improvements include the application of much higher magnetic fields , 

and lower intensities so as to obtain smaller linewidths. Apart from that , optimization will also 

have to include the experimental configuration (magnetic field direction and laser polarizations) 
and the fitting procedure for x(fit), a(fit) and op. 

6.2.2 g-factor ratios from higher resolution spectra 

Using the configuration leading to the detection of line splittings in section 5.1.4 one might 

hope for increased precision because the spectra resolve more subtle details depending on the 

parameters of interest. Using the data set depicted in fig. 5.11 one has to include all contributions 

of eq. (6.5) such that the fitting procedure gets more complicated. Replacing (gi, gJ ,E) by 

(r := -~, b:= gJP,BE/h) in equation (6.5) and using m4 = ~(n + 6m), m3 = ~(n - 6m) one 
finds 

6hfs ( 6f(n,6m) = op + rb6m + -2-

+ (6.8) 

Without detailed knowledge of E it is not possible to infer both g[ and gJ from eq. (6.8) but 

only the g-factor ratio r. From a fit of r, b, op to the 8 dark resonance positions obtained from 

the spectra of fig. 5.11 one gets 

g[ = -1.9821(31) .10- 4 , 
gJ 

(6.9) 

corresponding to a precision of 1.6 . 10-3 which is an improvement with respect to eq. (6.7) 

but still three orders of magnitude worse than the literature value of -1.9917400(26) . 10-4 

[WHI73J. The error reported in eq. (6.9) only results from the precision with which the dark 
resonance line centres could be determined and does not pay attention to systematic errors at 
all. Therefore the 0.5 % deviation from the literature value does not bear any significance yet . 
Sources for systematic errors concerning the measurement of g-factor ratios are manifold, but 

major contributions certainly arise from drifts of the applied magnetic fields such that different 

spectra were obtained for different magnetic field strengths. For instance, since decreasing the 
total time interval needed to record the spectra changes the influence of those drifts, performing 
the fit with the peaks corresponding to n = -1, ±3 only, yields flL = -1.9920(42) .10- 4 , i.e. , 

9J 
agreement with the literature value and a slightly increased fitting error. Hence the total error 
of this proof-of-principle measurement must be estimated at least an order of magnitude larger 

than the fitting error. Further systematic errors can arise from most of the line shifting effects 
discussed in chapter 5. In particular, due to different coupling strengths the AC-Stark shifts 



96 6. PRECISION MEASUREMENTS 

for the various peaks under consideration can well differ from each other by several percent 

of the total line splittings. Considerable improvement in precision can be expected, e.g., from 

decreasing the dark resonance linewidth. Eq. (6.9) was derived from dark resonances with 
typically a few kHz linewidth and line positions determined to within a few ten Hz, which is 

almost two orders of magnitude from the smallest linewidths obtained so far , mainly due to 

magnetic field inhomogeneities. 



97 

7 Conclusion 

The combination of recent advances in semiconductor laser technology and well-known buffer 
gas techniques facilitates precision spectroscopy of coherent dark resonances with a compact 
and robust experimental set-up. In the beginning, coherent coupling of two independent grating 

stabilized diode lasers via optical phase-lock had allowed to study and understand the influence 

of laser polarizations on CPT resonances . Since such a set-up still covers an area of about half 

a square metre on an optical table and is mechanically too unstable for practical applications 

envisioned also outside the laboratory environment, it was replaced by a much simpler device 
that might also be imagined in a miniature version as small as several cubic centimetres only. 

Frequency modulation of recently developed vertical-cavity surface-emitting lasers at 9.2 GHz 

was demonstrated to be efficient enough for dark state preparation and precision spectroscopy. 

On the whole, the main concern of the experiments described in this thesis was twofold: 

Systematic investigations of coherent population trapping resonances in thermal ceSlUm 

vapour were performed, and the results were compared with theoretical models. 

A physically intuitive model has been developed which explains multilevel CPT resonance de­
pendence on the geometrical configuration, i.e., the number and relative strengths of the Zeeman 

components as a function of laser polarizations and magnetic field direction. Since the model is 

based on symmetry arguments rather than a complete description of the atom light interaction 

it allows to treat the influence of geometry independently of line shapes, shifts, and widths. 
Agreement with the prediction of this model could be reached in all of the relevant experimental 

investigations. These also included CPT resonances induced by pure quadrupole coupling and 

line splittings due to the nuclear contribution only. 

The addition of a buffer gas led to the unprecedented observation of CPT linewidths as narrow 
as 42 Hz in thermal cesium vapour. Systematic investigations were performed to scrutinize the 
CPT resonance susceptibility towards line shifting and broadening influences such as the AC­

Stark shift, power broadening, collisional interaction with the buffer gas atoms, and the optical 

detuning from one-photon resonance. In order to understand the respective results a theoretical 
approach complementary to the multilevel model was chosen in that the properties of a single 

CPT Zeeman component were sought to be understood from a three-level based model. Although 

qualitative and in some cases also quantitative agreement was reached the limitations of this 

approach also became obvious thus necessitating further refinement of the theory. 

Although applications for CPT resonances in the sensitive measurement of magnetic fields have 
been proposed, the experiments described in this thesis and published in [N AG98) constitute the 
first proof-of-principle demonstrations of these possibilities. 

Static fields in the p.T range could be determined directly from the CPT Zeeman splitting 
with 3 . 10-5 relative uncertainty. A modulation technique allowed to detect magnetic fields 
oscillating in the kHz range for flux densities as low as 7 pT where an integration time of 0.6 s 
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per measurement point was used. Extrapolation from the SIN ratio yielded a sensitivity limit of 
about 500 IT for that particular experimental set-up. Furthermore, the method also permitted 

to determine a residual static field of about 30 nT from characteristic features of the line shape. 

Also based on the sensitive detection of magnetic fields is the determination of the ratio 9[ 19J. 

For suitable geometrical configurations this ratio could be inferred from the position of the 

CPT Zeeman components. Using magnetic fields strong enough to resolve non-linear Zeeman 
shifts and to completely separate all components predicted by the Breit-Rabi formula yielded 

a precision of about 10-3 which is still three orders of magnitude below the current literature 

value, mainly because in this proof-of-principle experiment not enough attention had been paid 

to the stability of the applied magnetic field. Future experiments might also allow to determine 
9 T I gJ as a function of buffer gas pressure in order to look for collisional modifications. 

After these successful proof-of-principle experiments future developments will certainly have to 

focus on the high potential for technical improvements, e.g., concerning the stability of various 

current sources. The availability of VCSEL with higher optical power and probably the use of 

heated cesium cells might yet be other steps towards an implementation of a magnetometer with 
unprecedented sensitivity. 
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A Frequency modulation techniques 

A.I Frequency modulation with residual amplitude modulation 

In order to calculate the frequency dependence of the two lock-in phase components one starts 

from the expression for a frequency- and amplitude-modulated light field oscillating at the optical 

frequency Wo with modulation frequency Wm , phase modulation index M, amplitude modulation 
index R and phase 'lj; between FM and AM: 

E = Eo (1 + Rsin(wmt + 'lj;) ) exp(i(wot + M sin(wmt)) + c.c .. 
2 

(A.l) 

Expansion into series of Bessel functions Jk(M) yields a decomposition into modulation side­
bands of all orders: 

with coefficients 

E = L akei(wo+kwm)t + c.c. 
k 

(A.2) 

(A.3) 

After the passage through the medium, which is assumed to be optically thin, both the amplitude 
and the phase of each sideband have been modified. This can be described with the help of 

complex transmission coefficients Tk = exp( -6k - icPk), where (- cPk ~ 6k) are proportional to the 
real and imaginary parts of the non-linear susceptibility of the medium, evaluated at frequencies 
Wo + kwm . Hence the transmitted light field Er reads 

Er = L akTkei(wo+kwm)t + c.c. 
k 

(A.4) 

With a factor 77 describing detector sensitivity and electronic gain factors the intensity la on a 
square-law detector is given by 

1 2 
la = 2"Eoc77IErl 

= ~EOC77 L akaITk~*ei(k-l)Wmt + c.c., 
k,l 

(A.5) 

where frequency contributions at twice the optical frequency Wo have been omitted because they 
are well beyond the detector response bandwidth. Then the lock-in amplifier picks out the signal 
component I oscillating at Wm: 

I ~ * T T* iwmt = EoC77 L..t akak_l k k-l e + c.c. (A.6) 
k 
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and under the assumption of IrPk(W) - rPk-l(W)1 « 1, 16k(w) - 6k- dw)1 « 1 one gets: 

I:::::! EOC'T}e - 28Q L akak-l (1 + 260 - 6k - 6k-l - irPk + irPk-l) eiwmt + c.c. 
k 

2EO"'lC'" [Re ( ~ Oka'_1 (1 + 200 - Ok - Ok-l - ifk + i fk - 1)) cas(wmt) 

-Im ( ~ akak-l (1 + 200 - Ok - Ok-l - ifk + ifk- d) sin(wmt) 1 

~EO"'lIEo 12 e-'" [S(W) sin (wmt) + C(w) cas( wmt)]. (A.7) 

For moderate M :::::! 1 (where fi(M) is small and Jv(M) can be neglected for v > 2) and small 

AM (where terms proportional to R2 can be dropped) one obtains 

S(W) =Jo(M)h (M) (rPH + rP-I - 2rPo) + h (M)h(M) (rP+2 + rP-2 - rPH - rP-I) 

+ ~RJ6(M) [- sin V; (rP-l - rP+l) + cos V;(2 + 260 - 6+1 - L 1)] 

+ ~ RJr(M) [- sin V; (rP- 2 - rP+2) + cos V;( 4 + 660 - 26+1 - 2Ll - 6+2 - L 2)] (A.8) 

C(w) =Jo(M)JdM)(Ll - 6+1 ) + J1(M)h(M)(L2 - 6+2 + Ll - 6+1) 

+ ~RJ6(M) [sin V; (2 + 260 - 6+1 - L 1) + cos V; (rP-l - rP+l)] 

+ ~RJr(M) [sin V; (4 + 660 - 26+1 - 2Ll - 6+2 - L 2) + cos V;( rP-2 - rP+2)]. (A.9) 

Note that the general procedure described here closely follows the derivation in [LEN84] but also 
includes some higher order contributions which become necessary for a typical phase modulation 
index of unity. 

A.2 Line shape retrieval 

Since a more detailed account on the line shape retrieval procedure is given in [WYN99B], only 
a few relevant aspects are summarized here. 

Discretizing eq. (A.7) with equidistant frequency points Wi (i = 1, ... , n) leads to: 

(A.10) 

with Yi = Y(wd, Xi = X(Wi). Thus for n frequency points there are 2n equations for the 2n+8k 
unknowns 6i, rPi, i = n - 2, ... , n + 2, where k is defined by Wm = k(Wi - wi- d. If Y(w) and X(w) 
drop ofl" to zero near the edges of the scan range one can assume that 6i = rPi = 0 for i < 1, i > n 

so that the number of equations matches the number of remaining unknowns. Furthermore, one 
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has to demand that k be integer, and that n be an integer multiple of k. If the experimental 
data do not comply with these conditions the spectra could first be resampled following a spline 

curve. 

For small absorption the absolute change in 15i near the resonance is small enough for the 

approximation of exp( -215i ) ::::: 1 to be valid such that the nonlinearity vanishes from the set 

of equations. The remaining system of linear equations can simply be solved for the set (15i , 

</Ji), i = 1, ... , n which is done numerically. Whereas the parameter M is chosen beforehand, the 

lock-in reference phase <p can usually be chosen correctly after a close inspection of the resulting 
(X, Y)-signals. Still, some difficulties arise from the fact that the parameters 'TJ, Rand 'lj; are 
not known beforehand. However, once <p is known, 'lj; can be determined with the help of sum 

rules. In addition, a wrong choice of any parameter, including k , leads to characteristic jumps 

and excursions in the deconvoluted line shapes (15(w), </J(w)) such that R, 'lj; can be adjusted until 

all discontinuities in the deconvoluted line shapes have disappeared. Since the deconvolution 

process is numerically more involved for </J(w) than for 15(w) the SIN ratio in the deconvoluted 

spectrum is usually much better for 6 (w) than it is for </J( w). For further discussion, examples, 

and limitations of the algorithm, see [WYN99Bj. 

A.3 Double-modulation technique 

Using the VCSEL set-up leads to a double-modulation of the laser current: 9.2 GHz sideband 
creation with an additional frequency-modulation in the kHz range for lock-in detection. Hence 

one might expect the modulation efficiency at 9.2 GHz and the inevitable AM at 9.2 GHz to 

interfere with the feature of interest. However, in the following paragraph it will be shown that 

the final formula obtained for such spectra is surprisingly easy and readily allows the application 
of the above deconvolution algorithm. 

For the calculation of the resulting spectra one starts from an expression for the double­

modulated light field. The optical frequency Wo is modulated by x(t), oscillating at w = 
9.2 GHz, with frequency and amplitude contributions Mo, Ro, respectively. x(t) is itself 
frequency-modulated by Wm in the kHz range with a modulation index M according to: 
x(t) = wt + M sin(wmt). Thus in total the field reads: 

E = Eo (1 + Ro sin(x(t) + 'lj;))ei(wot+Mo sin(x(t)) + c.c. 
2 

= ~o [1 + Rosin(wt + Msin(wmt) +'lj;)]ei(Wot+MOSin(wt+MSin(Wmt) ) +c.c. 

= L bklei(wo+kw+lwm)t + c.c. 

k,l 
(A.1l) 
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with 

bk1 = Jl (kM) . Ck 

~ J, (kM) ~O [J.(MO) - i ~O ei'; J'-1 (Mo) + i ~O e-i'; J'+l (MO)], (A.12) 

Again inserting transmission factors Tkl, this time depending on both the GHz sideband order 
k and the kHz sideband order l, the intensity on a square-law detector is given by 

T 1 '"' b b* T T* i((k-m)w+(l-n)wm)t + 
10 = "2EoC17 ~ kl mn kl mne c.c. 

k,l,m,n 
(A.13) 

For k - m = 0, required because of the detector response bandwidth, and l- n = ±1, i.e., lock-in 

detection at W m , this leads to: 

I = 2EoC17 [ - Im(L bklbk1-l TklTkl-l) sin(wmt) 
kl 

+ Re (L bklbk1-l TklTkl - l) cos(Wmt )] 
kl 

(A.14) 

Since the second order GHz-modulation sidebands are typically both weak and off-resonant, it 

is sufficient to evaluate the sum for k = 0, ±1 only. Since bOl vanishes for l of. 0 the direct carrier 
contribution with k = 0 is identically zero. Note that , of course, the carrier contribution is 
still contained in the non-linear transmission factors T±ll. Depending on which combination of 

the carrier- and first order GHz-sideband frequencies was used for dark state preparation the 

dominant signal contribution stems from either k = + 1 or k = -1 whereas the respective other 

term is again off-resonant enough to be neglected. Hence with the same approximations made 

as in eqs. (A.8), (A.9) the signal can be calculated as: 

h = 2kEoC17ICk 12 [So (w) sin(wmt) + Co (w) cos(wmt)] , 

where So, Co are given by eqs. (A.8), (A.9) with R = 0, and 

(A.15) 

(A.16) 

Depending on which sideband is used in the experiment, i.e. , on whether the carrier frequency 

is near-resonant with the F = 4 or the F = 3 hyperfine transition, one has to choose k = ±1 , 
respectively. From eq. (A.15) it becomes obvious that any dependence on the GHz-modulation 

parameters Ro, Mo, 'ljJ is contained in the overall amplitude, and changing from k = +1 to 
k = -1 only results in a change of the overall amplitude. Therefore, the deconvolution method 

described in the preceding section can be applied to the spectra obtained with the double~ 
modulation technique as well. However, in doing so, one finds that for the algorithm to work 
out one nevertheless has to chose R of. 0 in some cases. Hence, some non-linearity in the whole 
system causes additional amplitude-modulation at W m , the origin of which is not known yet. 
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B Coefficients used in analytical solutions 

The coefficients appearing in eqs. (2 .12)' (2.13), (2.14) for the analytical solution of P 32 read: 

A 64'Y12fi('Yl + 'Y2) + 16f1gi(3'Y12 + 'Y2) 

B 64'Y12{,1 + 'Y2) 

C 32'Y12 (4fi + g~)('Yl + 'Y2) + 32f1gi(3'Y12 + 'Y2) 

D 12S'Y12{,1 + 'Y2) 

E 32{,1 + 'Y2hI2fdfI2g~ - f 1gi + 2flf~ + 2f1fi2) 

+4g~{,1 + 'Y2)('Y12g~ - flgi) + 24'Y12fl(2f2(f2gi + flg~) 

+gi(g~ - gi)) + 4fI2gi(g~ + 4fI2fl)(3'Y12 + 'Y2) + 16flf2 

(fnlg~ + f 2l2gi) - Sf1gi{'2gi - 3f2g~) 

F 32{,1 + 'Y2h12 (2fi + 2f~ + 2fi2 + 2g~ - gi) + 
16g~f2(3'Y12 + 'Yl) + 16f1gi(3'Y12 + 'Y2) 

G 64'Y12{,1 + 'Y2) 

H (,1 + 'Y2)(4gig~(r2 - fl + f 12) + S'Y12 (Sfl2fl (2fl2fl + g~) + 
4f~g~ - 4gifi + g~(g~ - gi))) + Sgif1(3'Y12 + 'Y2)(4fi2 - gi) 

+S(3'Y12 + 'Yl)gif2 + Sgig~(3'Y12(f l - f 2) + f l212 ) 

J 32'Y12{,1 + 'Y2)(4fi2 + g~ - gi) 

K (,1 + 'Y2)(32fI2fl f 2l12(2fI 2f lf2 + f2g~ + f 1gi) 

+4'Y12(f2g~ + f 1gi)2 + gig~(flgi + f29~ + 4fI2flf2)) 

+f2(3'Y12 + 'Ydgg + f 1(3'Y12 + 'Y2)g~ + 3'Y12(gig~ + 16fi2 f l f 2) 

(f2gi + flg~) + 6gig~(fI2 - 'Y12)(f2g~ + f 1gi) + (gig~ 

+16fi2flf2)(fnlg~ + f 2l2gi) + 24f12'Y12f2fl 

(gi - g~)2 + 24fI2g~f2flgi(fI2 + 'Y12) + Sf12flf2 

(,2gi + 'YIgi) + 12fI2'Y12gig~(fi + f~) + 4f12gig~f2l2 
(f2 - fd + 4fl2gig~fl (f2l2 + fnd 

L 4{,1 + 'Y2hI2(SfI2 (2f I2 (f i + f~) + flg~ + f 2gi) 

+(gi - g~)2) + SfI2 (2f I2 (3'Y12 + 'Yl)(f2g~ + flgi) 

+gi{,1 (g~ - 2f12f 1) + 'Y2(2f I2 f 1 + g~))) 

M 64fi2'Y12{,1 + 'Y2) 
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4fn12CYl + 1'2) (4flf2 + gi) + Sf1f 2gh2 

16f21'12bl + 1'2) 

4bl + 1'2) (f2l12(gi - gi) + 1'12 (f2gi + f 1gi) -1'12f I2gi) 

16fi2f2l12bl + 1'2) 

bl + 1'2) (16fi2 f if21'12 - 4gifn12f2f12 

+4gifif121'12 + Sf12f 1f 2gil12 + gif1gil12 

+gif2l12 -1'12gif1 -1'12 f 2gigi) + 1'2(2f12gi 

(f2gi + f 1gi) + Sf2f 1fi2gi) 

Ar 161'12f ibl + 1'2) + Sf1gh2 

Br 161'12 bl + 1'2) 

er 161'12f ibl + 1'2) + SI'12gibl + 1'2) - 4gib12bl + 1'2) 

- 2fn2) 

Dr 161'12bl + 1'2) 

Er -4fhl2bl + 1'2)gi - 4gifn12bl + 1'2)f2 

+16fi2f r,12bl + 1'2) + Sf12f 1gil12bl + 1'2) 

+1'12b2gi(gi - gi) + I'lgi(gi - gi) - 4gi f nl f l2) 

-2f1gib2gi + I'lgi) + 2fl2 gh2(gi + 4f12fd 

-4gif nI2f l212 

Fr Sbl + 1'2h12 (2fi2 + gi - gi) 

Gr bl + 1'2)(2g~fI2(gi + 4fn12) + 1'12(gi - gi)2 

+4f121'12 (4fl2fi + (f2 - fdgi)) + Sfi2f lgh2 

Hr 16fi21'1dl'1 + 1'2) . 
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C Mod ulation efficiency of the VCSEL 

For a quantitative description of the measured modulation characteristics one starts once more 

from an amplitude- and frequency-modulated electric field with modulation indices R, M, re­

spectively, modulation frequency Wm and carrier frequency Wo: 

with 

E = ~o ( 1 + R sin(wm + 1f) ) ei(wot+M sin(wmt)) + c.c. 

+00 
= L anei(wo+nwm) + c.c., 

n=-oo 

(C.l) 

(C.2) 

where In(M) is the nth Bessel function of M. Inserting the complex transmission coefficients 

Tn = T(wo + nwm ) = exp( -<5n - icpn), similarly to the procedure described in appendix A, the 
intensity on the detector behind the cesium cell reads: 

I ex: L (anTnei(wo+nwm)t + c.c.) (ak Tkei(wo+nwm)t + c.c.) 
n,k 

n 

(C.3) 

where all oscillating terms are averaged out because both frequencies Wo and Wm are too fast for 

the photodiode response bandwidth. Hence the strength of the nth sideband Sn = lan l2 is given 
by 

where the total line strength has been normalized to unity: 

(C.5) 
n 
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D Decay rates and Rabi frequencies 

For the unperturbed cesium atom the decay rates must be proportional to the corresponding 
dipole transition rate averaged over polarizations q and all Zeeman sublevels. Hence for a given 

upper state hyperfine component F' one has 

,i ex L 1 (F' m~1 rq lFi mF) 12 
q,mF,m'p 

= 1 (F'lIrllFi) 12 L (_:, ,1 
I F mF-mF 

mF,mF 

2F/ + 11 (P'lIrllFi) 12 

~ (2Fi + 1) {;' ~' ~r I(1'lIrlIJ) I', i = 1,2, (D.1) 

where the Wigner-Eckart theorem and properties of 3j- and 6j-symbols have been used. With 
PI = 4, F2 = 3 this results in 

{ J' P' ~r ,1 2P1 + 1 PI J 

,2 2Ji, + 1 { J' ~r 
(D.2) 

P' 
P2 J 

i.e., 

,1/,2 = 7/5 for P' = 4 

,1/'2 = 1/3 for P' = 3, (D.3) 

with ,0 = ,1 +,2 = 27f . 5.3 MHz for the cesium D2 line. 

As for the Rabi frequencies, one has to consider two different aspects. Relative Rabi frequencies 

depend on angular momentum coupling and can be treated in a similar way as the decay rates. 

Absolute values of the Rabi frequencies have to be related to experimentally measured intensities. 

According to eq. (2.2) the Rabi frequencies gi were defined as gl = 1~~12Id3i 12. With intensities 
Ii = !cEoIEiI2, and for a laser polarization described by rq this yields 

(D.4) 
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Hence the scaling factors Wi(F') for the relative Rabi frequencies of eq. (3.42) result. 

For the absolute Rabi frequencies the reduced matrix element of eq. (D.4) can be related to the 

experimentally accessible lifetime T = 33 ns via the Einstein coefficient A = l/T: 

(D.5) 

For simplicity, the Rabi frequencies will also be written as 

g; = G(Ii)' (2F' + 1)(2Fi + 1) (F' 1 Fi)2 {J' F' I1} 2 
-mF' q mFi Fi J 

(D.6) 

with 

(D.7) 
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