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Abstract

This thesis reports on a novel concept of state-dependent transport, which achieves an unprecedented
control over the position of individual atoms in optical lattices. Utilizing this control I demonstrate
an experimental violation of the Leggett Garg inequality, which rigorously excludes (i.e. falsifies)
any explanation of quantum transport based on classical, well-defined trajectories. Furthermore, I
demonstrate the generation of arbitrary low-entropy states of neutral atoms following a bottom-up
approach by rearranging a dilute thermal ensemble into a predefined, ordered distribution in a one-
dimensional optical lattice. Additionally, I probe two-particle quantum interference effects of two atom
trajectories by realizing a microwave Hong-Ou-Mandel interferometer with massive particles, which are
cooled into the vibrational ground state.

The first part of this thesis reports on several new experimental tools and techniques: three-dimensional
ground state cooling of single atoms, which are trapped in the combined potential of a polarization-
synthesized optical lattice and a blue-detuned hollow dipole potential; A high-NA (0.92) objective lens
achieving a diffraction limited resolution of 460 nm; and an improved super-resolution algorithm, which
resolves the position of individual atoms in small clusters at high filling factors, even when each lattice
site is occupied.

The next part is devoted to the conceptually new optical-lattice technique that relies on a high-precision,
high-bandwidth synthesis of light polarization. Polarization-synthesized optical lattices provide two
fully controllable optical lattice potentials, each of them confining only atoms in either one of the two
long-lived hyperfine states. By employing one lattice as the storage register and the other one as the shift
register, I provide a proof of concept that selected regions of the periodic potential can be filled with one
particle per site.

In the following part I report on a stringent test of the non-classicality of the motion of a massive
quantum particle, which propagates on a discrete lattice. Measuring temporal correlations of the position
of single atoms performing a quantum walk, we observe a 6 o (standard deviation) violation of the
Leggett-Garg inequality. The experiment is carried out using so-called ideal negative measurements —
an essential requisite for any genuine Leggett-Garg test — which acquire information about the atom’s
position while avoiding any direct interaction with it. This interaction-free measurement is based on our
polarization-synthesized optical lattice, which allows us to directly probe the absence rather than the
presence of atoms at a chosen lattice site. Beyond its fundamental aspect, I demonstrate the application
of the Leggett-Garg correlation function as a witness of quantum superposition. The witness allows us
to discriminate the quantumness of different types of walks spanning from merely classical to quantum
dynamics and further to witness the decoherence of a quantum state.

In the last experimental part I will discuss recent results on collisional losses due to inelastic collisions
occurring at high two-atom densities and demonstrate a Hong-Ou-Mandel interference with massive
particles. Our precise control over individual indistinguishable particles embodies a direct analogue of
the original Hong-Ou-Mandel experiment. By carrying out a Monte Carlo analysis of our experimental
data, I demonstrate a signature of the two-particle interference of two-atom trajectories with a statistical
significance of 4 0.

In the final part I will introduce several new experiments which can be realized with the tools and
techniques developed in this thesis, spanning from the detection of topologically protected edge states to
the prospect of building a one-million-operation quantum cellular automaton.
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“The hallmark of this second quantum revolution is the realization
that we humans are no longer passive observers of the quantum
world that nature has given us.”

— Jonathan P. Dowling and Gerard J. Milburn [8]

CHAPTER 1

Introduction

HE development of quantum mechanics has inspired both theoretical and experimental physicists
for more than a century. During the first period — today referred to as the first revolution
of quantum mechanics [8] — significant scientific and technological breakthroughs were
accomplished. Among these, two stand out noticeably: understanding absorption and emission

of single photons stimulated the development of the laser [9, 10] and the concept of electrons and
holes was a necessary prerequisite for semiconductor transistors [11, 12]. However, technological
advances have not stopped and today, harnessing the quantum properties of single particles is no longer
fiction [13]. Instead it has become a routine tool in modern quantum optics experiments. Furthermore,
the quantum optics community is currently in an evolutionary state, where we transit from proof of
principle experiments towards quantum technologies which utilize the control over the quantum world.
While it is certainly a long and steep road before we reach the grand goal of building a universal quantum
computer [14], it is beyond doubt that our journey has already started. [15].

Up until today several platforms suited to realize a universal quantum computer have been put forward
and are currently being investigated by researchers around the world. Among these are ultracold atomic
gases in optical lattices [16] or micro potentials [17-19], trapped ions [20], photons [21], artificial
atom-like defects in solids [22, 23], and superconducting quantum circuits [24—27]. Furthermore, hybrid
approaches that combine different advantages of the aforementioned systems are also considered [28].
At present, however, it is undetermined which of these technologies will succeed. For this reason it is
becoming of increasing importance to develop stringent tests which allow for an objective comparison of
different approaches.

This thesis aims to contribute to quantum computing using individual neutral atoms trapped in state-
dependent optical lattices (see chap. 2 and chap. 3) and it further demonstrates rigorous tests of the
superposition principle using the Leggett-Garg inequality [29] (see chap. 4) as well as entanglement by
observing the Hong-Ou-Mandel interference of indistinguishable particles [30] (see chap. 5). Benchmark-
ing different quantum systems is by no means the only purpose of rigorous tests of quantum mechanics.
Despite the indisputable success of quantum mechanics so far, which has not failed to predict the behavior
of the microscopic world, it is still an unresolved question how to reconcile the quantum mechanical
worldview, where physical objects obey the unitary Schrodinger equation, with the macro-realistic one,
where objects are in one definite state at all times [31]. This question is typically referred to as the
measurement problem in quantum physics [32].

Several theories have been put forward to explain such a wave function reduction, which can be coarsely
divided into two groups [33]: (a) interpretational solutions and (b) objective collapse theories. In 1985
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Leggett and Garg (LG) derived an inequality relating correlation measurements performed at different
times, thereby providing an objective criterion to distinguish between quantum (a) and macro-realistic (b)
theories [29]. The experiments discussed in chapter 4 demonstrate that the trajectories of a single cesium
atom are truly nonclassical and our findings constrain macro-realistic theories. In fact, our delocalized
cesium atoms are the largest quantum objects which have been used to experimentally test the Leggett-
Garg inequality employing noninvasive measurements [34]. Admittedly, our experimental violation of
the Leggett-Garg inequality cannot be considered as a macroscopic test of quantum mechanics, since it
tests the superposition of a single cesium atom which is at most delocalized over 2 um. Nevertheless,
2 um is already relatively large, considering that the diameter of human hair is just below 100 pm, while
the average length of the bacterium E. coli is also 2 um. Furthermore, our non invasive measurement
technique may also be applied to test superposition states of even more macroscopic objects such as
macromolecules and nanoparticles [35].

The Leggett-Garg inequality is considered to be the gold standard for testing the superposition
principle of single particles [34]. Similarly, the Hong-Ou-Mandel effect is often regarded as a measure
of the indistinguishability of photons [36—-39]. Only recently, independent groups achieved the first
demonstration of a Hong-Ou-Mandel interference with massive particles using tunneling between
potential wells [17, 40] and in an atom interferometer-like experiment with metastable helium [41]. In
chapter 5, I will demonstrate a complementary approach utilizing our novel polarization-synthesized
optical lattice (see chap. 3) in combination with the experimental techniques introduced in chapter 2
to observe the Hong-Ou-Mandel type two-particle interference with cesium atoms. Furthermore, our
polarization-synthesized optical lattice gives us an unprecedented control over the position of individual
atoms in optical lattices. In chapter 3 we make use of this control — in a bottom-up approach — to generate
arbitrary atom patterns, including unity filling of lattice sites, in a one-dimensional optical lattice. Our
results show an alternative to the conventional top-down approach in optical lattices, which relies on a
Mott insulator phase [42, 43].

Reaching the grand goal of building a universal quantum computer may be one of the greatest
challenges experimental physics has faced so far [44]. This challenge arises partially from an inherent
conflict: we aspire a well controllable quantum system, that is at the same time only weakly coupled to the
environment, such that coherences are preserved for long times [45]. However, despite all experimental
effort it is fundamentally impossible to realize a quantum system which is truly decoupled from the
environment. For this purpose, theoretical physicists have developed several different techniques, such
as quantum error correction [46] or topologically protected surface codes [47], to correct for inevitable
errors of quantum devices. Nevertheless, the experimental level of precision required to utilize these
techniques is rather demanding and so far only few experiments have passed the so-called error thresholds
(e.g. [25, 48]). In order to reach the required error thresholds, we experimentalists need to meticulously
investigate the physical mechanisms which lead to decoherence in our quantum systems. For this purpose,
we aim to study the capability and potential limits of neutral atoms trapped in state-dependent optical
lattices in chapter 2 and chapter 3. For example, we investigate the off-resonant scattering rates which
limit the lifetime of our quantum information (see sec. 2.4.1), the fundamental limits of ground state
cooling of atoms in optical potentials (see sec. 2.5.2), and the excitations caused by transport operations
(see sec. 3.3.1).

The tools and techniques presented in this thesis open the path for several novel experiments, e.g. to
study the robustness of topologically protected edge states in discrete-time quantum walks [49], explore
few-body correlations arising from quantum statistics [50], realize quantum optical control of atom
transport [6], simulate quantum electrodynamics [51], and investigate the Bose-Hubbard model with a
controllable number of spin-1/2 particles [52].



CHAPTER 2

Experimental Techniques

BSERVING and manipulating individual atoms in a controlled fashion is an experimental chal-
lenge and requires several techniques. In the following chapter we will discuss the details of
the experimental apparatus at hand, which resembles the one originally introduced in the PhD
thesis of Michat Karski [53]. However, several essential features have been redeveloped from

scratch (e.g. the capability to transport atoms depending on their internal state, see chap. 3), while others
are novelties (e.g. three dimensional ground state cooling in a blue-detuned hollow beam see sec. 2.5.2).
The present chapter gives an overview of the current state of the experimental apparatus including its
capabilities used in the following chapters to realize: the bottom-up generation of low-entropy states (see
chap. 3); an experimental violation of the Leggett Garg inequality, which disproves classical trajectory
theories with quantum walks (see chap. 4); and first experiments with indistinguishable massive particles,
such as the observation of the Hong-Ou-Mandel interference (see chap. 5).

The heart of the experimental apparatus is shown in figure 2.1, which consists of a one-dimensional

Figure 2.1: Ilustration of the central part of the experimental apparatus: we form an optical lattice through the
interference of two counter-propagating laser beams inside a vacuum glass cell. Cesium atoms are trapped in the
bright regions of the optical standing wave pattern (see sec. 2.1.1). Illuminating trapped atoms with three pairs of
counter-propagating molasses laser beams (see sec. 2.1.1) allows us to image individual atoms in the optical lattice
by collecting their fluorescence with an objective lens (see sec. 2.2). This figure is adapted from Alberti et al. [2]
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state-dependent optical lattice formed within a rectangular vacuum glass cell. Atoms trapped in this
optical lattice can be imaged by recording the fluorescence light through a custom made microscope
objective with a numerical aperture of NA = 0.23 [2, 54]. While — compared to state of the art objectives
— the small numerical aperture prevents us from resolving atoms visually in single lattice sites, we
developed a super-resolution algorithm, which allows us to determine their position numerically even for
atoms in neighboring sites [2]. In general, our algorithm is closely related to those employed in super-
resolution microscopy of biological structures [55-57]. The state-dependent optical lattice embodies the
key feature that distinguishes our experimental apparatus from other experiments working with neutral
atoms. While these experiments [17, 43, 58—61] rely on tunneling between different lattice sites, our
optical lattice enables an active and coherent control of the atomic position. The conceptual idea of
state-dependent transport is introduced in section 2.1.3, whereas the experimental details of our novel
polarization-synthesized optical lattice are discussed in chapter 3.

2.1 Cooling and Trapping Individual Neutral Atoms in an Optical
Lattice

2.1.1 From the Background Gas Into the Optical Lattice

Optical dipole potentials play an essential role in modern quantum optics experiments. The capability
to create remarkably versatile conservative potentials — arising from laser beams and their interference
— directly in free space has lead to a long list of successful experiments over the last two decades.
Among these experiments is the all-optical realization of a Bose-Einstein condensate (BEC) [62]; the
observation of the BCS-BEC crossover (named after Bardeen, Cooper, and Schrieffer) for ultracold
fermionic lithium [58, 63]; and the realization of both bosonic and fermionic Mott insulators (named
after Sir Nevill Mott) [43, 64, 65]. While these experiments are based on the dynamics of multiple atoms,
more recently optical dipole potentials where shown to be exceptional tools to precisely control the
quantum dynamics of individual atoms as well [17, 61, 66, 67].

One Dimensional Optical Lattice

Quantum mechanics describes the atom light interaction by a shift of the atomic energy levels (E; = fiw;),
which is commonly referred to as AC-Stark shift. This atom light interaction can be understood more
intuitively in a classical description, where the laser light is considered as an oscillating electrical field,
which induces a dipole moment in the atom. The induced dipole moment then in turn interacts with the
electric field giving rise to an optical dipole potential. A mathematical derivation of the optical potential
using the Lorentz model can be found in nearly every textbook on quantum optics [68] or in Grimm
et al. [69]. Therefore, let us come back to the quantum mechanical description. Using second order
perturbation theory and the atom light interaction Hamiltonian Hiy (see eq. (B.29) in appx. sec. B.4) we
can calculate the light induced energy shift (AE;):

was a2
AE; = lw’ 2.1
— NI W— W)
J#l

where 7w is the energy of a single photon from the interacting light field and 7w j.; the energy difference
between the ith and jth energy level of the atom. Inserting the interaction Hamiltonian Hj,., which
is proportional to the dipole operator d, requires us to calculate transition matrix elements of the
following type: (j| d |i). These matrix elements can be obtained using the Wigner-Eckart theorem and by
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subsequently applying the Wigner-3j and -6j symbols (see appx. sec. B.3). In general, it is important to
calculate the contributions from all atomic energy levels E;, as we will see in section 2.1.3. However, to
gain more physical insight we will restrict ourself here to a two-level system — the atomic groundstate
|g) and its first excited state |e) — interacting with a classical electric field as defined in appendix B.1
equation (B.2). Using the rotating wave approximation, equation (2.1) then simplifies to:

1¢eldIgy, .,  6rc*T
AE =+ B2 = 4——], 2.2
; A |Eol wg A (2.2)

where %A is the energy difference between the ground and the excited state. In the last step we replaced
the electric field amplitude by the corresponding light intensity / (see eq. (B.3) in appx. sec. B.1) and the
matrix element {¢| d |g) by the decay rate:

3

w >
= 0 dlgp)?. 2.3
real €1 d19)] (2.3)

If the light intensity is spatially varying — either due to interference, or simply from a focussed laser beam
— equation (2.2) gives us the desired optical potentials (see fig. 2.2(a)). These potentials can be either
attractive or repulsive: If we choose a laser frequency w;.q smaller than the transition frequency wy of the
ground state |g), an atom in its ground state |g) is attracted towards regions of high laser intensity, whereas
the excited state |e) gets repelled from these (red lines and curves in fig. 2.2(a)). In the opposite case
(wple > wo) We receive an additional sign change from A in the denominator of equation (2.2), hence,
the light induced energy shift is in the opposite direction, resulting in inverted potentials (blue lines and
curves in fig. 2.2(a)). In the first case the laser detuning is commonly referred to as red detuned, whereas
the latter is referred to as blue detuned. These optical dipole potentials are conservative potentials,
meaning that an attracted atom is not automatically trapped as well. Trapping depends on the kinetic
energy of the atom, which is required to be smaller than Uy, the depth of the potential. It is noteworthy
that the light shift of the excited state |e) cannot be explained by the classical Lorentz model. This
opposite light shift, however, can be of importance especially for deep potentials and when the atom
cycles between the two states (see Martinez-Dorantes [70]). Nevertheless, the heating arising from this
effect can be neglected for the potential depths discussed within this thesis.

The optical dipole trap in our experimental apparatus is formed by two counter-propagating Gaussian
laser beams (Apt = 866 nm) which are focussed to a waist of wpt = 17 um inside the ultra high vacuum
glass chamber (see fig. 2.1). The focussing lens system implemented in our experimental apparatus is
documented in Forster [71]. Along the longitudinal direction, interference of the two counter-propagating
beams forms a periodic cosinusoidal potential, which is commonly known as an optical lattice. Optical
lattices can be seen as artificial crystals of light, which, unlike solid state lattices, are defect free and
offer a wide range of experimentally controllable tuning parameters. The lattice constant apt of our one
dimensional (1D) optical lattice is given by Apt/2 = 433 nm. The transverse potential results directly
from the focussed Gaussian beam. Consequently, the 1D optical lattice potential is given by:

2 2,2

Uz, p) = Up—DL e 6 cos? (2—” z) : 2.4)
w*(z) Apt

where z and p are the longitudinal and transverse coordinates, w(z) the Gaussian waist at position z,

and Uy the maximum potential depth. All experiments reported in this thesis — unless stated explicitly

otherwise — span over a maximum distance of less than 200 lattice sites, which is one order of magnitude

smaller than the Rayleigh length of the focussed laser beams. Hence, to a good approximation, we can
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Figure 2.2: (a) [llustration of two-level atoms light shifts arising from the interaction with off-resonant electromag-
netic radiation. Ground state atoms are attracted to bright regions, if the light frequency w is red detuned to the
two-level transition and vice versa if the light frequency is blue detuned. (b) Simplified opto-electrical setup to form
a one dimensional optical lattice: The laser beam, generated by the Ti:sapphire laser source, is split into two equal
parts using a beams splitter (BS). The intensity of each of the two emerging beams is controlled using a feedback
loop, which steers the corresponding acousto-optic modulator (AOM). For illustration only one of two control loops
is shown: before entering the vacuum glass a cell part of the laser beam is extracted using a pickup plate (PP) and
the intensity recorded by a photodiode (PD). The photodiode voltage signal is subtracted by a computer controllable
reference voltage Vpc, which then serves as an error signal for the analog proportional—integral-derivative (PID)
controller, the output signal of which is mixed with a static 80 MHz RF signal to steer the corresponding AOM.

BS -

neglect the contributions from the curvature of the wavefront and the Gouy phase of the Gaussian beams
to the optical lattice potential. While it is possible to derive the dynamics of a trapped atom directly
from equation (2.4), it is more convenient to treat each lattice potential well individually in a harmonic
approximation. Correspondingly, the wave function of a trapped atom is described by the well understood
quantum harmonic oscillator model. Using the harmonic approximation we can directly compute the
atomic oscillation frequencies (w = 27 X v), often referred to as trapping frequencies, for the longitudinal
(L) and transverse (T) directions:

VL = _2Wo_ 2.5)

2
mcs /IDT

1 4Uy

VI = oy [———
2\ mes wiyy

(2.6)

where mc; is the mass of a single cesium atom. Figure 2.3(a) shows an illustration of the harmonic
approximation along the longitudinal direction. The three depicted atoms occupy different energy levels,
which are often referred to as vibrational levels. The occupied vibrational level, in fact, is determined by
the kinetic energy — also referred to as temperature — of the atom itself.

So far, we have only considered the desired trapping effect of optical dipole potentials, neglecting
the likelihood that a trapped atom can also scatter photons off these potentials. While in some cases we
specifically use the photon scattering to our advantage (e.g. molasses cooling, see sec. 2.1.1, or Raman
sideband cooling, see sec. 2.5.2), scattering photons with the optical lattice leads to undesired effects:
Each scattering event increases the total energy of the atom by two photon recoil energies [72, 73], which
thus results in heating and eventually the loss of atoms from the trapping potential (see sec. 2.1.2 for
a detailed discussion and sec. 2.5.2 for the impact on the ground state cooling). Furthermore, as we
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will discuss in section 2.4.1, scattering of photons also leads to decoherence, since they carry away
information of the atoms quantum state. The scattering rate of a the two-level system can be calculated
using the generalized Fermi’s golden rule [74]:

1 _ 2|1 ¢l Hincle) (el Hint ) @7
T R h A
6rc? [T\
ank -

The details of the calculation for cesium using the Kramers-Heisenberg formula [75] can be found in
appendix B.4 and its application is discussed in section 2.4.1. If we compare the scattering rate (2.8)
with the potential depth (2.2) we understand that it is desirable to use far off-resonant dipole traps,
since the scattering rate scales as 1/A2, while the potential scales only as 1/A. Furthermore, we also
understand that the photon scattering rate is significantly higher for red-detuned optical dipole traps than
for blue-detuned ones, since trapped atoms are located in regions with high photon densities. However,
trapping atoms in purely blue-detuned dipole traps requires a three dimensional optical lattice [76] and
more importantly would not allow us to transport atoms depending on their internal state (see sec. 2.1.3).

A simplified illustration of our 1D optical lattice and how it is formed is depicted in figure 2.2(b).
In chapter 3 we will discuss the experimental setup in more detail, nevertheless, the simplified setup
allows us to understand and discuss several relevant aspects. The laser source generating the desired
wavelength Apt = 866 nm is a Ti-sapphire laser system' which delivers up to 2.5 W output power. The
laser source beam is separated into the counter-propagating arms of the optical lattice using a beamsplitter.
Both beams are intensity stabilized by a feedback loop which acts on the corresponding acousto-optic
modulator (AOM). Only one of the two intensity feedback loops is exemplarily depicted in figure 2.2(b):
Before entering the vacuum glass cell, a small fraction of the beam is extracted using a pickup plate. The
pickup plate is a wedged glass plate, one side of which is anti reflection coated, whereas the other has a
custom coating with 12 % reflectivity for both horizontally and vertically polarized beams under 45° angle
of incidence (AOI). The extracted fraction is detected by a self built amplified photodiode (bandwidth
10 MHz). The recorded photodiode voltage is subtracted from a computer controlled reference voltage
(Vpc) and fed to an analog PID controller (bandwidth 10 MHz), which generates a voltage signal that is
mixed with a RF signal (80 MHz) to steer the corresponding AOM. The bandwidth of the entire control
loop is approximately 1 MHz with a remaining relative intensity noise (RIN) of 0.04 % (details are
discussed in section 3.2.2). The control loop bandwidth is primarily limited by the finite response time of
the AOM [77], which arises directly from the speed of sound inside the AOM crystal.

The experimental sequences conducted with our experimental apparatus mainly involve two different
modes of operation for the optical lattice: one for initial trapping and imaging, the other to precisely
control the quantum state of the trapped atoms. In the former case we form a deep lattice potential
using 30 mW of optical power in each of the two counter-propagating laser beams giving rise to a
maximum potential depth of Uy/kg = 370 uK. In the latter the potential depth is reduced to 74 uK
by using only 6 mW of optical power per lattice beam to reduce the previously discussed undesired
scattering of lattice photons. To change from the illumination to the quantum control lattice setting, we
use an 100 ms adiabatic cosinusoidal ramp of the control voltage Vpc, which is imprinted on the laser
intensity by the intensity control loops. Using equation (2.5) and equation (2.6) allows us to calculate the
expected longitudinal and transverse trapping frequencies of the quantum control lattice, v, = 110kHz

! Coherent MBR 110 pumped by Coherent Verdi V18
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Figure 2.3: (a) [llustration of the harmonic approximation of individual potential wells from an optical lattice,
which is formed by two counter-propagating laser beams. (b) Technical drawing of the interference-filter-stabilized
(IF) external cavity diode lasers (ECDL): (1) laser diode, (2) laser diode collimation lens, (3) interference filter,
(4) cats eye lens, (5) low voltage ring piezo stack, (6) partial reflective mirror, (7) final beam collimation lens. (c)
Cesium D, transition hyperfine structure including the frequency splittings of the hyperfine energy levels. The blue
arrow indicates the cooling transition, whereas the red one is used as repumping transition for the magneto-optical
trap (MOT).

and vt = 1 kHz respectively (see also fig. 2.3(a)).

A Magneto-Optical Trap for Cesium

To trap atoms in an optical lattice — which for the atom embodies a conservative potential — we require a
mechanism to slow the atoms down, since their velocity follows a Boltzmann distribution with a mean
velocity of circa 200 ms~! at room temperature. Therefore, even in the deep imaging lattice (370 uK),
we would essentially never trap any atoms. Slowing down atoms can be achieved efficiently by scattering
photons from a laser beam: for each absorbed photon the atom experiences a recoil — and hence receives
a momentum transfer in the propagation direction of the laser beam — whereas the following photon
emission is on average isotropic. Therefore, after scattering multiple photons, the atom is decelerated by
the radiation pressure of the laser beam. This idea can be easily extended to three dimensions utilizing six
laser beams forming three orthogonal pairs, where the lasers of each pair are counter-propagating. Such a
laser configuration is also referred to as optical molasses. Making use of the Doppler effect we can ensure
that an atom only absorbs a photon which travels in opposite direction by detuning the laser light slightly
away from the atomic resonance (typically on the order of a few times the natural line width I') [78, 79].
For cesium, this cooling method reaches a minimal temperature of Tpoppler = 125 uK (corresponding
to an average velocity of circa 0.1 ms~!). However, while these optical molasses can efficiently cool
atoms, it does not per se trap atoms, since the molasses cooling does not prevent the diffusion of atoms.
This brings us to the magneto-optical trap (MOT). In its core, the MOT utilizes a magnetic field gradient,
such that the absorption of photons also becomes position dependent. The magnetic field gradient —
achieved by pair of coils in anti-Helmholz configuration, realizing a magnetic quadrupole field — lifts the
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degeneracy of the Zeeman sublevels. This, in turn, means that a circular polarized laser beam induces
either a o or o~ transition depending on whether the atom is to the left or right of the magnetic zero
crossing. The degeneracy of the Zeeman sublevels, furthermore, is similar to the Doppler effect: it shifts
a detuned laser either in or out of resonance, leading to a position dependent force, which traps atoms in
the center of the quadrupole field. A detailed description of the physical effects involved in a MOT can
be found e.g. in Townsend et al. [80] and Staene et al. [81].

The experiments typically conducted with our experimental apparatus require only small ensembles of
atoms (n < 50) to be loaded into the optical lattice. Hence, we can load atoms directly from the residual
background vapor of the ultra high vacuum inside the glass cell (pressure < 10 x 10~!° mbar) sparing us
the requirement of a multi chamber vacuum apparatus and long distance transport of cold atoms [82].

Following the outlined conceptual idea of a MOT that produces a trapped cloud of cold cesium atoms,
we require only a single laser source (cooling laser), which is then split into six optical molasses beams.
For a cesium ground state atom the D, |F = 4) — |F’ = 5) transition is ideal (see fig. 2.3(c)), since
it represents a closed transition’. However, off-resonant scattering (|[F = 4) — |F' =4) — |F =3))
eventually pumps atoms into the |F = 3) state. By employing a second laser source (repumping laser),
which is resonant with the |F' = 3) — |F’ = 4) transition, we repump all atoms back into the |F = 4)
ground state (see fig. 2.3(c)).

Employed Laser System: Both laser sources are interference-filter-stabilized (IF) external cavity
diode lasers (ECDL). These lasers have been developed, built and characterized by ourselves based on
the design introduced in Balliard et al. [83]. ECDL lasers use commercially available laser diodes within
an external cavity to ensure stable single mode operation and a reduced linewidth, in comparison to the
free running laser diode [84]. All types of ECDL lasers essentially make use of two components: (a)
a wavelength selective element and (b) an optical feedback mechanism (see fig. 2.3(b) for a schematic
overview of the IF-ECDL developed by our group). The separation of these two elements is the key
difference of the IF-ECDL compared to the traditionally employed Littow configuration ECDL [85-87].
The Littrow configuration uses a diffraction grating for both wavelength selection and feedback, whereas
the IF-ECDL uses a narrow bandwidth interference filter (FWHM 0.4 nm) for selection and a cat’s eye
retroreflector with a partially reflective mirror (30% reflectivity) for optical feedback (see fig. 2.3(b)).
The cat’s eye retroreflector makes the laser cavity less sensitive to mechanical noise, since it reduces
the angular sensitivity by one order of magnitude for our specific application [88, 89]. The diffraction
grating of the Littrow-configuration ECDL prevents such a cat’s eye retroreflector, because the grating
itself requires the laser beam to cover several grating lines. These improvements give rise to a spectrally
narrow (Gaussian linewidth Avg, < 10kHz, Lorentzian linewidth Avy, < 2kHz) and long term stable
laser source. In fact, once optimized, the laser remains mechanically maintenance free for years and can
be stabilized to an atomic reference for up to several months without any readjustments. Such advances
in the stability of laser sources are crucial to counter the increasing complexity of modern experimental
setups.

The wavelength of each IF laser source is stabilized to a cesium vapor cell using polarization spectro-
scopy [90]. The MOT cooling laser is locked on the crossover transition [91] |FF = 4) — |F’ = 3) and
|FF =4) — |F’ =5) of the D; line. This transition is red detuned by 27 X 226 MHz from the cooling
transition |F = 4) — |F’ = 5). Using an acousto-optic modulator (AOM) in double pass configuration
(2 x 110 MHz) we shift the wavelength closer to the cooling transition to reach the desired detuning of a
few times the natural line width I'. The MOT repumping laser is directly locked on the |[F = 3) — |F’ = 4)

2 Dipole transition selection rules prevent an atom to decay from the excited state |[F” = 5) into the |F = 3) ground state, see
equation (B.28)
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transition, to quickly repump atoms back into the cooling cycle.

2.1.2 Storage Time of Atoms Trapped in a 1D Optical Lattice

By now we understand how one can trap neutral atoms in an optical lattice, hence, the natural next
question is: How long do atoms remain stored in such a lattice? In general, we need to distinguish
between two situations: the storage time of atoms trapped in the lattice with continuous cooling and
without. These situations are related to the previously mentioned two modes of operation. In the case
where we want to image the atoms, or simply store them for longer times, we use the 370 uK deep lattice
in combination with continuous molasses cooling. In fact, we image trapped atoms by recording scattered
photons from the molasses cooling with our objective (see illustration in fig. 2.1 and the discussion in
sec. 2.2). In the other case, when we want to precisely control the quantum state of the trapped atoms,
we need to shield the atoms as much as possible from the environment. Therefore, we use the 74 uK
deep lattice, which leads to less off-resonant scattering processes with photons of the optical lattice (see
sec. 2.4.1).

We previously discussed the working principle and limit of free-space molasses cooling. However,
once the atoms are cold enough to be trapped in the optical lattice, we enter a different regime where
we can employ sub-Doppler cooling techniques using the optical molasses laser beams introduced
in section 2.1.1. Each of the three molasses beam pairs produces a polarization gradient due to the
counter-propagating circular polarized beams. These polarization gradients enable sub-Doppler cooling
as explained in detail in Dalibard et al. [92]. In comparison to the Doppler limited molasses cooling,
polarization gradient cooling requires a larger detuning from the |FF = 4) — |F’ =5) transition and
significantly reduced laser intensities. As we will see in the following, properly adjusted detunings
and intensities of the molasses laser beams lead to temperatures below 10 uK in the 74 uK deep optical
lattice, which is well beyond the Doppler limit of 125 uK. The polarization gradient cooling, in fact,
provides a cooling rate which is much larger than the heating rates of the optical lattice. Therefore, an
atom can only get lost from the lattice by elastic collisions with room temperature background vapor
atoms [93]. Experimentally we measure a background limited storage time of circa 6 minutes which, in
turn, can be used to estimate the pressure inside the vacuum chamber. Trapped atoms can collide with a
variety of background vapor constituents (e.g. Cs, Ar, N, CO, Hp, CHy), nevertheless, the background
collision limited storage time is rather insensitive to the exact type of involved collision [93]. Following
the calculation from Bjorkholm et al. [93] we infer that our background vapor pressure is on the order of
p ~5x 107! mbar.

The storage time of trapped atoms without continuous cooling, on the other hand, is limited by heating
of the optical lattice. The experimental sequence used to measure this storage time is likewise also the
fundamental building block of almost all experimental sequences presented in this thesis. Initially, atoms
are loaded in the magneto-optical trap and subsequently transferred into the 370 uK deep optical lattice,
where they are sub-Doppler cooled using the molasses beams. We can infer the initial number of loaded
atoms by integrating the recorded scattered fluorescence photons (see Alberti et al. [2] and discussion in
sec. 2.2). Subsequently the molasses beams are turned off and the lattice depth is adiabatically lowered to
74 uK, where the atoms remain in the dark for a given hold time. Finally the lattice depth is increased
to its initial value and we infer the number of remaining atoms, again, by integrating the recorded
fluorescence photons during molasses cooling. Each blue dot, shown in figure 2.4, indicates the fraction
of surviving atoms obtained from such a storage time measurement for increasing holding times. Already
after a few seconds a visible portion of the initially trapped atoms are lost, which is significantly shorter
than the circa 6 minute storage time limited by background vapor collision (for comparison represented
by the grey dashed line in figure 2.4). In the previous section, we identified one heating source, which is
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Figure 2.4: Storage time measurement of atoms which are trapped in our 1D optical lattice. Each blue dot represents
an individual measurement. The red solid line shows the result of a numerical simulation using the Fokker-Planck
equation, as discussed in sec. 2.1.2. For comparison, the grey dashed line shows the storage time, which is limited
purely by background vapor collisions.

also present when trapped atoms remain in the dark: off-resonant scattering of lattice photons leading to
recoil heating. The impact of these scattering events is not neglectable when cooling the atoms into their
vibrational ground state (see sec. 2.5.2). However, the corresponding heating rate is smaller than those
arising from technical fluctuations of the optical lattice, namely intensity and phase noise of the involved
laser beams.

In the following sections we will discuss how these two technical noise sources can be mathematically
modeled and quantitatively estimated using experimentally accessible observables [94]. These heating
rates can then be used in combination with the Fokker-Planck equation [95, 96] to model precisely the
experimentally obtained curve shown in figure 2.4. In fact, the red line shown in figure 2.4 is obtained
by numerically solving the Fokker-Planck differential equation. This method allows us to gain valuable
insight into the physical mechanism that primarily limits the storage time, which in turn, can be used
to further improve the experimental apparatus (see sec. 2.1.2). Furthermore, employing a least square
minimization of the numerically solved Fokker-Planck equation allows us to determine the temperature of
the atomic ensemble [97, 98]. Inferring the exact temperature of a cold atomic ensemble itself is already
a challenging task. Among various techniques the two most commonly used are the time-of-flight and
the release-recapture method. The time-of-flight method is based on measuring the thermal expansion of
an atomic ensemble after it is released into free space [99, 100]. On the contrary, the release-recapture
method determines the temperature by lowering the optical lattice adiabatically until the potential depth
is on the same or a lower order than the average temperature of the trapped atomic ensemble [101,
102]. For our experimental setup, the former method is experimentally not feasible, whereas the latter is
complementary to the storage-time-measurement method.

Modeling and Characterizing the Intensity Noise Induced Heating Rate

While the employed intensity feedback loops (see figure 2.2(b)) greatly reduce the noise of the lasers,
they cannot fully nullify them. Let us assume we have a cesium atom with mass mcs, which is trapped
in a harmonic potential V(x) at the position xq. The intensity noise, hence, leads to fluctuations of the
potential depth, which in turn can be modeled by a perturbation of the spring constant of the harmonic
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Figure 2.5: (a) Opto-electrical setup to measure the intensity noise of our optical lattice: each beams intensity
noise is measured individually by reflecting the light onto a fast photodiode, the signal of which is analyzed with a
spectrum analyzer. (b) Recorded relative intensity noise spectral density (blue) and corresponding heating rate I'
(green), according to equation (2.14). The dashed vertical line represents 2 X v, = 220kHz.

oscillator [94]:
V(x) = ’%(hy)z(l +e)(x — x0)°. (2.9)

Using time-dependent perturbation theory we can then determine the transition rate R,+»., to excite or
relax the vibrational level n of the trapped atom:

7T2V2
Ruspen = —5=S1@)n+ 1+ Dnx 1), (2.10)

where S is the one-sided power spectral density of the intensity noise [103]. It is noteworthy that the
transitions are parametric, hence, there are no transitions between the vibrational level n and n + 1. The
heating rate for a single atom in the vibrational state n is given by the difference between the excitation
(n + 2 « n) and relaxation (n — 2 < n) rate multiplied by the energy spacing of the harmonic oscillator.
To calculate the average heating rate (£(¢)) for an atomic ensemble, we include the probability density
P(n, 1) to find an atom in the vibrational state 7:

(E@) = ) P(1,0) 210 (Ryszcn = Ruzn) 2.11)
= 1228 [ Qv)(E(1)) . (2.12)

In the last step we made use of the fact, that the average energy of an harmonic oscillator is given
by >, P(n,t) hiw (n + 1/2). This result shows that parametric heating with a heating rate I" leads to an
exponential increase of the average energy:

(E@) = T(E(n)), (2.13)
[ =72S1(2v). (2.14)
The heating rate I itself only depends on two experimental parameters: the trapping frequency v and

the power spectral density S;. For our 1D optical lattice, we obtain the former using equation (2.5)
and equation (2.6), which results in 110kHz and 1 kHz, respectively. The latter can be measured as

12
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outlined in figure 2.5(a): each beam’s intensity noise is recorded separately using a fast photodiode?, the
signal of which is analyzed and saved by a spectrum analyzer®. The one-sided power spectral density
thus obtained and the resulting heating rate are shown in figure 2.5(b). The quadratic dependency on
trapping frequencies leads to a significant difference of the longitudinal and transverse heating rates,
which amount to I' = 4.2 mHz for vi, = 110kHz and I" = 0.002 mHz for vy = 1 kHz.

Modeling and Characterizing the Phase Noise Induced Heating Rate

Differential optical phase noise of the two laser beams forming the trap leads to a shaking of the harmonic
oscillator’s potential minima. Similar to the perturbation of the spring constant in the preceding section,
this shaking can be modeled by a perturbation of the trap center xg [95, 96]:

PSS 2y (x = (x0 + €))% . (2.15)

V(x) = >

Using time-dependent perturbation theory again, we obtain the following transitions rate R+, for a
trapped atom with vibrational level n:
4rty3

1 1
Rps1en = A mcs S¢(V) (I’l + 5 + E) s (2.16)

where S 4(v) is the one-sided power spectral density of the phase noise converted into units of m?/Hz.
Hence, the average heating rate of an atomic ensemble is given by:

(E@0) = > P(1,0) 20 (Rys1n = Rac1n) 2.17)
= 4zr4mc5v4S s(v) (2.18)
=0, (2.19)

where we defined Q as the phase noise induced heating rate. In contrast to intensity noise, phase
noise does not lead to exponential heating, instead it is independent of the atoms’ energy. Nevertheless,
since its magnitude grows with the fourth power of the trapping frequency it becomes significant for
deep traps. In order to calculate O, we need to measure the optical phase noise, which is experimentally
a bit more demanding than measuring the intensity noise. Differential phase noise, in general, can be
obtained by creating a beat signal of the two constituents. As depicted in figure 2.6(a), we essentially
create a Michelson interferometer by extracting a fraction of each beam — using a wedged pickup
plate’ — and retro reflecting one of the two extracted beams. The resulting beat signal is detected by the
same fast photodiode, the signal of which is analyzed and recorded by the spectrum analyzer. Using
a mirror mounted on a piezoelectric actuator (see fig. 2.6(a)) we employ a control loop (not depicted
in fig. 2.6(a)) to stabilize the optical phase of one beam. This control loop is used to linearize the
differential phase noise with a maximal signal to noise ratio (SNR). While a comprehensive description
of the control loop is given in Boventer [104], two aspects are noteworthy: To accurately measure the
differential phase noise, the control loop bandwidth needs to be chosen sufficiently smaller than the
trapping frequencies — in this case we chose a bandwidth of 100 Hz. Furthermore, since the setup itself
resembles a Michelson interferometer, it needs to be ensured that it is mechanically as stable as possible.

3 Thorlabs: PDA10A-EC - Si Fixed Gain Detector, 200 — 1100 nm, 150 MHz BW
4 HP: 3589A Spectrum/Network Analyzer, 10 Hz to 150 MHz
3 Altechna: BK7 glass plate, 2° wedge, coating side 1: AR, coating side 2: PRs, PRp = 12 % for 45° AOI
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Figure 2.6: (a) Opto-electrical setup to measure the phase noise of our optical lattice: both counter-propagating laser
beams are overlapped in a Michelson-like interferometer. A slow feedback loop stabilizes the difference between the
two beams using a piezo mirror. The signal of the overlapped beams is recorded using a fast photodiode, the signal
of which is analyzed with a spectrum analyzer. (b) Obtained phase noise spectral density (blue) and corresponding
heating rate Q (green), according to equation (2.18). The dashed vertical line represents v;, = 110 kHz.

Otherwise the mechanical instabilities of the measurement setup will appear as optical phase noise.
Therefore, both — the pickup plate and the retro reflection mirror — were mounted in a monolithic cube®,
the acoustic resonance frequencies of which are measured to be below the longitudinal trapping frequency.
Once recorded we convert the one-sided power spectral density measured in units of (°)>/Hz into the
desired units m?/Hz by the following relation:
Apr A

Ax = > 2 (2.20)
The resulting phase noise heating rate for the longitudinal trapping frequency (110 kHz) amounts to
Q =13.5uKs™ ! and Q < 0.00001 uK s~ for the transverse (1 kHz), respectively. The extracted values
are comparable to those presented in Reimann [105], which are obtained from a different experimental
apparatus, which utilizes similar hardware. So far we neglected the physical origin of this optical phase
noise. Indeed, the phase noise arising from the laser source itself is substantially less, whereas mechanical
vibrations should not play a significant role at 110 kHz. The majority of the optical phase noise arises
from the electrical phase noise of the RF sources driving the AOMs (see figure 2.2 and discussion in the
following), which are used to stabilize the beam intensities. These RF signals are generated using direct
digital frequency synthesizers (DDS) based on the AD9954 chip from Analog Devices. While this DDS
chip enables us to perform a variety of operations with the optical lattice — as we will see in the following
chapter — it is outperformed by the latest generation of DDS chips (e.g. AD9915), which offer a two
orders of magnitude reduced phase noise. In fact, we started a dedicated project to develop a versatile
digital frequency synthesizer by interfacing a field programmable gate array (FPGA) with an AD9915
DDS chip. More information regarding this project can be found in Ramola [106].

Thermometry Using the Fokker-Planck Equation

Now that we obtained a mathematical description of intensity and phase noise heating for atoms trapped
in an optical lattice, it is intriguing to see if we can use this insight to better understand the storage time
measurement presented in figure 2.4. So far all calculations have been carried out using the quantum

6 Owis: mounting cube W 40-4 with JT 40T-STPZ-O and JT40T-PHSZ-M insets
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Figure 2.7: (a) Temporal evolution of ensemble of atoms trapped in an 1D optical lattice the energy of which is
initially distributed according to the 1D Maxwell-Boltzman distribution given in equation (2.23). The dynamics
are obtained by numerically solving the Fokker-Planck equation (2.22). (b) Different storage time measurements
together with their numerical simulation using the Fokker-Planck equation. See section 2.1.2 for more details.

mechanical harmonic oscillator. While it is possible to describe the evolution of the energy distribution
n(E,t) quantum mechanically as well, we will restrict ourself here to a classical description, since
coherences do not play a role. Following the idea presented in Gehm et al. [95, 96], we can use the
Fokker-Planck equation to model the evolution of a trapped atomic ensemble [107]:

on(E,H) 0 0*
5 = 35 MIEInE. D]+ = [DE)n(E. D] (2.21)

where M| is the first moment — the mean heating — and D the energy diffusion coefficient. In general
we would need to solve this partial differential equation for all three spatial dimensions. However, we
learned in the preceding sections that both the intensity and phase noise heating strongly depend on the
trapping frequencies and that these differ by more than one order of magnitude for our one dimensional
optical lattice. Hence, the longitudinal heating will lead to a loss of atoms long before they experience an
effect of the transverse one, which allows us to restrict the analysis to one dimension. Using the derived
transition rates given in equation (2.10) and equation (2.16), we obtain the following 1D Fokker-Planck
equation:

8 n(Er, 1)

(2.22)
OE}

on(EyL,t I )
S e

-\ On(EL, 1)
] ) Tam

+ (FLEL + 0L 9B,

where the index L denotes the longitudinal trap direction and we used Ep, = (n + 1/2)hwy . To solve the
partial differential equation numerically, we furthermore need an initial distribution for n(E, f) as well as
boundary conditions. For atoms trapped in an optical lattice and cooled by molasses cooling, the former
is well described by a 1D Maxwell-Boltzman distribution:

[U, _ELU
ng =2 kB_(;" e kllgT(;) , (2.23)

which depends on the trap depth Uy and more interestingly on the temperature 7. As we will
see in the following, this dependency allows us to not only extract the heating rates from a storage
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Table 2.1: Heating rates and atom ensemble temperatures obtained from non-linear least squares fits of the simulated
storage time to the corresponding measurements shown in figure 2.7. The contribution of the intensity heating
rate is too small to be fitted, hence, we assume the static value obtained from equation (2.14). The storage time
represents the time at which 50 % of the initially trapped ensemble is lost.

Line in figure 2.7(a) To r 0 Storage time
Solid red (7.8 £0.7)pK 42mHz (7.5 £0.3)uK 57! 6.6s
Dashed red (142 £ 1.0)uK 42mHz (20.0 £0.7)uKs™! 2.2s

time measurement, but also the initial temperature of the atomic ensemble. Before we can determine
the boundary conditions, we need to reconsider our model assumptions. So far we approximated the
optical lattice potential wells by a harmonic oscillator, since we only considered deeply trapped atoms.
However, once their vibrational level increases sufficiently, the atoms experience the anharmonicity of
the cosinusodial potential [108], where this approximation breaks down. Nevertheless, we will disregard
this anharmonicity in the following and consider an atom as lost once its energy exceeds the trap depth
Uyp. This can be partially justified by the exponential energy dependence of the intensity noise heating,
which heats out atoms quickly once they have become hot. The time an atom spends in this anharmonic
regime, hence, is rather neglectable. To model the loss of atoms we choose an absorptive boundary for
Er > Uy, whereas we designate a reflective one for E1, < 0 to avoid unphysical energies. Figure 2.7(a)
shows the resulting energy probability distribution n(E, ), which is obtained from numerically solving
the Fokker-Planck partial differential equation using Matlab [109] for an initial ensemble temperature
To = 10uK, T = 42mHz, and Q = 13.5uKs™!. The energy probability distribution n(E, £), in turn,
can be used to generate a theoretical prediction of the storage time measurement by integrating over the
energy, which corresponds to the remaining fraction of atoms at time ¢. Hence, we engineered a model,
depending only on the temperature, I', and Q, which predicts the storage time of atoms trapped in an
optical lattice.

The solid red line in figure 2.7(b) shows the result from a non-linear least squares fit of the simulated
storage time to the measured one indicated by the blue data points (same ones as shown in fig. 2.4)
and likewise the red dashed line for the green data points. The obtained values for Ty, I, and Q are
summarized in table 2.1. The initial temperatures are well within the range one expects from sub-Doppler
molasses cooling for a trap depth of 74 uK [101]. Their difference can be attributed to slightly different
molasses cooling parameters in combination with an increased phase noise heating rate Q. In fact, the
storage time measurement represented by the green data points was obtained by deliberately increasing
the electronic phase noise of the digital RF frequency synthesizers driving the AOMs. The storage time
values given in table 2.1 correspond to the time, when half of the initial ensemble is lost. Furthermore,
it turns out that the atom’s storage time in the optical lattice of our experimental apparatus is primarily
limited by phase noise heating. Figure 2.8(a) and figure 2.8(b) both show the numerically calculated
storage time for different values of " and Q for an initial temperature Ty = 8 uK. While the storage time
remains essentially constant if one varies I" over three orders of magnitude, it shows a strong dependence
on the phase noise Q. As previously discussed, we recently developed a versatile digital frequency
synthesizer [106], which reduces the electronic phase noise by two orders of magnitude compared to
the currently employed DDS. This improvement should boost the storage time of trapped atoms so far
that it becomes only limited by background gas collisions, represented by the dashed horizontal line in
figure 2.8. To confirm this hypothesis we conducted a storage time measurement, in which we reduced
the phase noise of the optical lattice further by employing the same digital frequency synthesizer to drive
the AOMs (see fig. 2.2). Employing a single, common frequency synthesizer removes the differential
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Figure 2.8: 50 % storage time (a) as a function of the intensity noise heating rate I" and (b) of the phase noise
heating rate Q. The solid red and dashed vertical black lines correspond to the current situation in the experimental
apparatus at hand. The additionally shown blue lines represent heating rates, which are increased or decreased
by an order of magnitude. The dashed horizontal black lines represent the upper limit due to background vapor
collisions.

phase noise, while — by additionally ensuring that the optical path lengths of the laser beams are equal —
it also strongly suppresses common mode phase noise. The grey point depicted in figure 2.7(b) shows the
resulting surviving fraction of atoms, which nicely agrees with the background collisions limited storage
time, represented by the dashed grey line in fig. 2.7(b).

2.1.3 A State Dependent Optical Lattice for Cesium

The concept of state-dependent optical trapping was originally introduced by Jaksch et al. [110] and
simultaneously by Deutsch et al. [111]. It has since been used in cold atom experiments to coherently
transport neutral atoms [112], which enabled the realization of e.g. controlled collisions between neutral
atoms [113], quantum walks of single neutral atoms [66], or a digital atom interferometer [114]. The
core challenge of state-dependent trapping is to engineer two independently controllable, yet spatially
overlapped, optical lattices which trap atoms conditioned on their internal atomic state. As illustrated
in figure 2.9(a), in our laboratory we realize these potentials for cesium atoms by utilizing the differ-
ent AC vector polarizability of the hyperfine levels, such that an atom in the cesium hyperfine level
1) := |F =4, mp = 4) is attracted only by o-*-polarized light, whereas one in [|) := |F = 3,mp = 3)
is predominantly attracted by o~ -polarized light. The two hyperfine levels likewise embody a pseudo
spin-1/2 system, which we will use as our qubit system throughout this thesis. These two qubit states can,
furthermore, be coupled via microwave radiation at 9.2 GHz (see sec. 2.3).

By only considering the fine instead of the hyperfine structure of cesium, the AC vector polarizability
can be understood more intuitively. The corresponding level scheme is shown in figure 2.9(b). Using
the multilevel version of equation (2.2) it is clear, that we can find a wavelength which is red detuned to
the D, transition (*P3 ,2) and simultaneously blue detuned to the D; transition (?P; /2), such that an atom
in state [1') := |J = 1/2,m; = +1/2) effectively feels no potential arising from o~ -polarized light since
the attractive and repulsive potentials cancel out precisely. At the same time this atom still experiences
an attractive potential from o*-polarized light. Likewise an atom in state ||") := |/ = 1/2,my = —1/2)
experiences only the attractive potential from o~ -polarized light, while the potential of o*-polarized
light is effectively zero. This gives us exactly the desired state-dependent optical potentials. Coming
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1
& position

Figure 2.9: (a) State-dependent optical lattices acting selectively on either one of two long-lived hyperfine states of
a cesium atom. Upper and lower lattices originate from " and o~ circularly polarized standing wave light fields,
respectively. This figure is adapted from Robens et al. [1]. (b) Cesium D; and D, transition fine structure energy
levels. By choosing a so-called magic wavelength Apr of cesium, atoms with m; = —1/2 are attracted only by o~
polarized light, whereas atoms with m; = +1/2 are attracted by o* polarized light. This figure is adapted from
Doéring [115].

back to our qubit hyperfine states |T) and || ), it unfortunately turns out that we cannot directly map these
onto the fine structure states |T") and ||”). Instead performing a basis transformation from the hyperfine
to the fine structure representation gives us:

N =1=7/2,m=1/2)®1"), (2.24)

)= \/ZII =7/2,m =7/2)® ) - \/gll =7/2,m; =5/2)®I1") . (2.25)

Consequently, it is impossible to find a wavelength where each qubit state only couples to one of the
two circular polarizations. A thorough calculation including transitions to higher excited levels [115]
yields a magic wavelength Apt = 865.9 nm, where the potentials of the qubit states are given by:

Up = Uy, (2.26)

7 1
U, = \/;U(,— + \/;Um. (2.27)

Therefore, the |T) state is perfectly decoupled from o~ -polarized light, whereas the ||) state experiences
some of the 0" -polarized light.

Since we work in a deep optical lattice, such that tunneling between lattice sites is fully negligible,
the trajectory of an atom in the |T) (]])) state is determined by the motion of its o+ (¢-7) lattice, giving
rise to state-dependent transport. The state-dependent transport scheme of all experiments prior to those
presented in this thesis — including those conducted in our group [66, 114, 116] — were based on the first
experimental realization by Mandel et al. [112]. This experimental realization, however, is limited to
simultaneously shifting both of the optical lattices in opposite directions by at most one lattice site. To
hurdle down this shortcoming, we devised a novel scheme for spin-dependent transport based on a high
precision, large bandwidth synthesizer of polarization states of light, the experimental details of which
are discussed in chapter 3.

Lastly it is noteworthy that cesium is an ideal candidate for state-dependent optical transport. Being an
alkali metal, cesium can be efficiently cooled and trapped, while its heavy mass — in comparison to other
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alkali metals — leads to a large fine structure splitting of Ap; — Ap, = 43 nm. A large splitting is desirable,
since we want to avoid off-resonant scattering of lattice photons and the state-dependent optical trapping
itself requires us choose a wavelength in between the D; and D, transition. In fact, as we will see in
section 2.4.1, off-resonant scattering of lattice photons puts a hard boundary on the time where we can
use our qubit states, before they loose their information to the environment. An interesting alternative is
provided by group III atoms: these atoms possess the particularity of an inverse energy level structure,
which allows the realization of state-dependent optical lattices, in principle, arbitrarily detuned from
resonance. However, it needs to be considered that substantially more experimental effort to cool and
trap those atoms is required [117-122].

2.2 Super-Resolution Microscopy of Atoms in an Optical Lattice

For most modern quantum optics experiments optical detection and manipulation of individual atoms
in neighboring sites of an optical lattice has become a central tool, e.g. for quantum information
processing [16, 67, 123—-129], quantum simulations [66, 122, 130-132], and recently for studying
strongly correlated Fermi systems at the single particle level [133—136]. Resolving the positions of
individual atoms with single-site resolution represents a technological challenge, since in optical lattices
the distance between two lattice sites is on the order of the optical lattice wavelength. Nevertheless, over
the last few years significant advances have been accomplished on both ends of the detection problem:
Sophisticated algorithms nowadays allow us to reconstruct the position of individual atoms even in small
clusters at high filling factors, including unity filling (see sec. 2.2.3). Furthermore, the newest generation
of atom imaging systems have almost reached the maximum attainable optical resolution, which is bound
by the diffraction limit. In fact, the record is currently held by the microscope objective designed and
constructed by our group, which is discussed in section 2.2.4.

The imaging system which is currently employed in the experimental apparatus (see Alberti et al. [2]
for details) has an optical resolution of r4 = 1.9 um, according to Abbe’s diffraction limit. However, to
achieve single-site resolution we need to extract the position of single trapped atoms with an uncertainty
smaller than the lattice constant a (0.433 um). In analogy to super-resolution imaging in biological
systems, we can determine the position of our atoms beyond the optical resolution by precisely knowing
its point spread function and the underlying noise. Following Bobroff [137], in one dimension the
localization precision of the fluorescence peak produced by a single atom can be estimated by

RMS3. + Ag /12 47 RMS}gy - o

_+_
N Ay N?

(Ax)? = , (2.28)

where it is assumed that the fluorescence signal is integrated over n, pixels in the direction transverse to
the lattice, and that RMSpsr is the RMS width of a Gaussian point spread function, A, is the size of a
detector pixel in the object plane, N is the average number of recorded photons per atom, and o7 is the
RMS background noise [2]. In the literature, extensions of the result in equation (2.28) can be found
for two dimensions [138] and, using the statistical theory based on the Fisher information matrix, for
a generic disc point-spread function (e.g., Airy disc) [139]. Note also that the localization precision in
equation (2.28) concerns only a single localized emitter, which is the case, for example, of an isolated
fluorophore in photo-activated localization microscopy or of a very sparsely filled optical lattice. In
addition, it is noteworthy that, when employing an electron multiplying CCD camera (as is the case of
the present work), a factor 2 must to be added in front of RMSIZ,SF in equation (2.28) to account for the
effectively halved quantum efficiency due to the electron multiplying excess noise [ 140].
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In the following, we intend to give an estimate of the localization precision of our imaging system
based on equation (2.28): The RMSpgsr of our imaging system is circa 1.5 um (see sec. 2.2.2) and the
parameter A, can be calculated by dividing the detector pixel size (16 um) by the magnification (55, see
Alberti et al. [2]). The number of photoelectrons (ph. e™) recorded on the EMCCD sensor per single
atom can be estimated by knowing the photon scattering rate, the solid angle of the microscope objective
into which photons are emitted, and the exposure time. Atoms illuminated with nearly resonant light at
Ar = 852 nm emit photons at the maximal rate of I'/2 for strong saturation, with I 27 X 5 MHz being
the radiative decay rate for cesium. However, to prevent atoms from hopping along the lattice during
imaging, the saturation parameter is typically chosen much smaller [141, 142] (s = 0.01), which reduces
the scattering rate by a factor of 10 or more [143]. The solid angle directly depends on the NA of the
imaging system according to the formula Q/47 = (1 — V1 — NA?)/2 ~ 1 %. By additionally taking into
account the finite quantum efficiency of the CCD camera QE(Af) ~ 30 % as well as photon losses (circa
6 %) due to both reflections from optical surfaces (e.g. the vacuum glass cell) and the transmission of a
narrow-band optical filter, we expect to detect about 1 000 ph. e~ per atom for a single fluorescence image
with an exposure time of 7 = 1's. For comparison, in our experiments we record about 1300 ph.e™s™!
per atom. The measured background-noise distribution has a RMS width o, of about 0.6 ph.e™ per
camera pixel (see Alberti et al. [2]). Since we integrate the fluorescence images along the direction
transverse to the 1D optical lattice, the variance of the background noise o-i is multiplied by the number
of transverse pixels n, (typically n, =~ 40). Hence, based on equation (2.28) we expect a localization
precision of Ax ~ 60 nm, which is sufficiently smaller than the separation between two lattice sites. By
using longer exposure times it is possible to improve the resolution even further, however, at the cost of
decreasing the duty cycle and increasing the probability for atoms to either hop to adjacent lattice site or
to be lost because of heating and background gas collisions.

2.2.1 Fluorescence Imaging of Neutral Atoms

Fluorescence imaging embodies the core method of acquiring information about the atoms trapped in
our optical lattice, which enables us to infer e.g. the number of trapped atoms, their qubit state (see
sec. 2.3.1 and sec. 3.3.1), or the exact lattice site which they occupy (see sec. 2.2.3). In section 2.1.2
we already discussed how to capture cesium atoms from the residual background gas and transfer them
into the deep optical lattice (Ug/kg = 370 uK), where they are illuminated using optical molasses beams.
The fluorescence light emitted by the atoms at A = 852 nm is then collimated by a diffraction-limited
objective lens (effective focal length f; = 36 mm) [54] and imaged onto an electron multiplying CCD
(EMCCD) camera’ by a plano-convex tube lens (focal length f> = 2 m), see also figure 2.1. This imaging
system corresponds to an infinity-corrected microscope. We employ an EMCCD camera as our detector
since they offer a read-out noise which is more than one order of magnitude smaller, even compared to
scientific-grade CCD sensors [144].

Figure 2.10(a) exemplarily shows a fluorescence image of eight trapped atoms, which are loaded
into the 1D optical lattice in stochastic positions and subsequently imaged with an illumination time
of 1s. The intensity distribution for each atom exhibits a characteristic elliptical shape elongated along
the radial direction of the optical lattice with an aspect ratio of about 6:1 (FWHM along the axial
direction of 1 um). The elongated shape originates from the thermal motion of trapped atoms (circa
40 uK for Uy/kp = 370 uK by sub-Doppler cooling) in the radial direction, along which the confinement
of the atoms is weaker due to the vaguely focussed Gaussian beam of the optical lattice. Along the
lattice direction, instead, trapped atoms can be regarded as localized point sources with a Dirac-delta
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Figure 2.10: (a) Image of atoms in a 1D optical lattice acquired with a 1 s exposure time. (b) The corresponding
integrated intensity distribution. The image is subdivided into regions of interest (white regions) and regions with
no fluorescence signal (grey regions), which are used to determine the constant background baseline (dashed
horizontal line). The solid red line shows the result of the parametric deconvolution, whereas the vertical dashed
lines show the positions of the atoms constrained on a periodic lattice. The distance of the atoms from the leftmost
one are 18, 25, 58, 62, 67, 74, 115 in units of lattice sites. (c¢) Normalized residuals between the integrated
fluorescence signal and the fitted model, resulting in a reduced y? = 0.835. This figure is originally published in
Alberti et al. [2].

longitudinal distribution
O(x,y) = O(y) 6(x), (2.29)

where the radial motion is incorporated by a radial intensity distribution O(y). This assumption is valid,
because the extent of the axial thermal motion (FWHM = 60 nm) as well as the previously mentioned
drift of the optical lattice (< 20 nm/s [126]) is one order of magnitude smaller than the optical resolution.
Because we are primarily interested in extracting the precise position of atoms along the optical lattice,
we integrate the acquired images along the radial direction as depicted in figure 2.10(b), which reduces
the complexity of the following parametric deconvolution to one-dimension. The continuous curve
overlapped with the integrated fluorescence signal shows the end result of the parametric deconvolution
problem presented in section 2.2.3, which yields atoms’ positions with single lattice-site precision. In
fact, we can determine the distance between pairs of atoms in discrete units of the lattice-site separation
(a = 433 nm) with a statistical confidence much higher than 99 %. Figure 2.10(c) shows the residuals
between the reconstructed distribution and the measured signal, normalized to the expected noise strength.
The uniform distribution of residuals with RMS spread around one attests the goodness of the parametric
deconvolution, which is ensured by an accurate knowledge of the line spread function of the imaging
system as well as of the noise model. While we discuss how to reconstruct the line spread function of the
imaging system in the following, the information of the noise model can be found in Alberti et al. [2].
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2.2.2 Characterizing the Optical Response of the Imaging System

One key element to achieve a resolution beyond the diffraction limit is the accurate knowledge of the
response of our imaging apparatus. More precisely, it is important for the parametric deconvolution
problem to know exactly the imaged fluorescence intensity distribution of a single illuminated atom.
Since we are working with a digital camera sensor, the optical response of the imaging system is given
by the convolution of the microscope objectives point spread function P(x, y) with the detector pixel
function Ry (x, y) [145]:

Pcep(x,y) = (Rp * P)(x, y) . (2.30)

As argued in the previous section all our experiments are based on reconstructing the atoms’ position
in the 1D optical lattice with single site fidelity, which allows us to integrate the acquired images along
the radial direction. Therefore, we need to reconstruct the convolution with the line spread function
(LSF), which is mathematically defined by integrating the point spread function in one dimension
(L(x) = f P(x,y)dy). Superimposing multiple integrated intensity distributions of sufficiently isolated
atoms (such as the rightmost atom in figure 2.10(b)), allows us to increase the signal-to-noise ratio [145]
and further reconstruct the LSF with sub-pixel resolution. This process is referred to as image registration
in digital signal processing.

Reconstructing the Line Spread Function with Sub-Pixel Resolution: We make use of a re-
cursive algorithm to process single-atom images, whose end result should ideally converge to Lccp,
the one-dimensional version of equation (2.30). The algorithm is composed of a preparatory procedure
followed by an iterative one.

The first step of the preparatory procedure consists in identifying those regions of interest containing
exactly one atom well separated from other atoms by several Abbe radii r (typically 10) in order to allow
us not only to reconstruct the central peak of the LSF but also the tails containing the diffraction fringes.
In the next step, we apply a Fourier filter to each single-atom image to remove high-spatial-frequency
noise. The filter utilizes the fact that every optical system with a hard aperture has a cutoff in the
optical transfer function (OTF), defined as the Fourier transform of Lccp, exactly at the Abbe frequency
1/ra = 2NA/A¢. After discrete Fourier transformation (DFT) of the integrated intensity distributions, the
filter sets the amplitude of all frequencies beyond the Abbe cut-off (typically > 1.2/ra to reduce Fourier
artifacts) to zero because these frequencies components do not carry physical information (OTF = 0
in this region). The effect of Fourier filtering is significant for our imaging system because the Abbe
frequency is three times smaller than the Nyquist frequency of 0.5 pixel~! — the frequency up to which
noise appears if not filtered out. The last step of the preparatory procedure to reconstruct the LSF consists
in interpolating the noise-filtered single-atom distributions with sub-pixel resolution, which allows us to
reposition them in the subsequent iterative procedure with high precision. Because of the finite bandwidth
of the OTF, the integrated fluorescence signal can be interpolated with an arbitrary spatial resolution
using the Whittaker—Shannon interpolation formula: We extend the DFT fluorescence distribution in
Fourier space beyond the Abbe cut-off with zero values (zero padding), so that the number of points in
the Fourier space is increased by an integer factor s with respect to the original number. The inverse
DFT of the zero-padded signal results in an upsampled distribution, where the width of a sub-pixel is
equal 1/s of the original pixel’s width. The size of the sub-pixel is chosen smaller than the estimated
localization precision (typically s = 8 so that 1/8 pixel = 37nm < Ax for a magnification of 55, see
eq. (2.28)). An alternative yet equivalent application of the Whittaker—Shannon interpolation formula
operates directly in position space by convolving the spatial distribution with a sinc function.

The iterative part of the reconstruction algorithm consists primarily of two steps. In the first one, we
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Figure 2.11: (a) The solid blue line shows the reconstructed LSF from more than 200 single-atom images, the
dash-dotted black line shows the ideal, diffraction-limited LSF derived from an Airy disk with NA = 0.228, and
the dashed red line represents the fitted model based on a wavefront expansion in Zernike polynomials. The
dash-dotted curve is normalized to have a maximum value of 1, while the other two curves are normalized to the
same area of the dash-dotted one. (b) Corresponding modulation transfer functions. All three curves show the hard
cut-off at the Abbe frequency 1/r4. This figure is originally published in Alberti et al. [2]

obtain the position of each atom by a non-linear least squares fit of the model distribution Lccp to the
recorded fluorescence signal (see sec. 2.2.3 for more details). The precise (unrounded) value of the atom
position is used to shift and align all noise-filtered sub-pixel-interpolated intensity distributions. Hence,
superimposing all images gives a reconstruction of the fluorescence distribution of a single atom with a
signal-to-noise ratio enhanced by a factor \/N,, where N, is the number of superimposed single atoms
(typically a few hundreds). The reconstructed distribution Lgyess provides us with a new estimate of Lccp.
The iterative algorithm stops when no change is observed (typically after 5 to 10 iterations). For the first
iteration, we use a Gaussian function to determine the position of single atoms in the case where no LSF
function is a priori known.
A mathematical derivation (see Alberti et al. [2]) shows that this algorithm converges to

Lguess(x) = Ry * Rsp * Rp x L)(x), (2.31)

instead of the desired expression in equation (2.30), where R is the probability distribution of the non-
linear least squares estimator of the single-atom position for an atom ideally positioned in the origin x = 0
(with a RMS width Ax ~ 60 nm, see eq. (2.28)), and Ry, the sub-pixel function equivalent to the pixel
function R, but s times narrower. However, since the “blurring” effect of both additional convolutions in
equation (2.31) is on the order of a few tens of nanometers, we conclude that Lgyess(x) = (R, * L)(x) to a
good approximation.

Analysis of the Reconstructed Line Spread Function: Beyond its importance to retrieve the
atoms’ positions with maximal localization precision, the line spread function contains valuable informa-
tion on the performance of the optical system. Figure 2.11(a) shows the reconstructed LSF obtained with
the algorithm outlined above. In the case of an aberration-free imaging system, the point spread function
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Table 2.2: Result of the wavefront fitting to the measured LSF expressed in terms of low-order Zernike polynomials.
The overall wavefront distortion is obtained by adding the different contributions in quadrature. 1D fitting of our
model to the LSF cannot prevent a certain ambiguity on the identification of wavefront distortion angles (not
displayed).

Defocus  Astigmatism Coma Trefoil Spherical
Orders (radial, azimuthal) (2,0 2,2) 3,1 (3.,3) 4,0)
Simpevelront distortion 0 9162)  0.0482)  ~0.007(1) ~0.025(1)  0.013(1)

is described by the well-known Airy disk, the corresponding LSF of which is displayed for comparison
in the same figure. Besides an overall agreement, the reconstructed LSF exhibits a lower maximum and
a distinct asymmetry such that the higher-order diffraction peaks are only visible on the left-hand side.
These differences arise from optical aberration, where a naive guess suggests that comatic aberration
could account for the observed asymmetry. Mathematically, the point spread function is defined by
computing the modulus square of the Fourier transform of the electric field (wavefront) at the pupil
(Fraunhofer diffraction). The wavefront contains all information about optical aberrations and can be
expressed in the basis of Zernike polynomials [146]. To gain insight into the nature and amount of the
optical aberrations affecting our optical system, we fitted to the reconstructed LSF the one obtained from
a wavefront expansion in low-order Zernike polynomials up to spherical aberration. The fitted LSF is
displayed in the same figure, demonstrating a remarkable agreement with the experimental curve. A
detailed list of the Zernike coefficients is given in table 2.2, which shows that the leading aberration
contribution arises from astigmatism and not coma. Combining all contributions in the table yields an
overall RMS wavefront error of ~ A1/17 (whereas the peak-valley deviation is 4/3), which corresponds to
a Strehl ratio of 0.87 defined as the ratio between the maxima of the measured point spread function (PSF)
and the ideal one. In addition, the wavefront analysis gives a precise estimate of the actual numerical
aperture of the optical system, NA = 0.228(3). The deviation between the estimated numerical aperture
and the one of the objective lens design (NA = 0.29) is most likely caused by clipping at the knife-edge
apertures along the imaging path.

Figure 2.11(b) shows the modulation transfer function (MTF = |OTF]|) of the reconstructed LSF
compared to that of an aberration-free optical system and of the fitted wavefront model. The MTF of an
optical system with a hard aperture has a geometrical interpretation, which explains the shape as well as
the hard cut-off. In general, it can be shown that the MTF is given by convoluting the pupil function with
itself, where displacements of the electric field distribution in the convolution integral directly translate
into spatial frequency units of the MTF [147]. Therefore a hard aperture, and the resulting discontinuous
pupil function of an optical system, translate into a cut-off of the MTF at the Abbe frequency. This cut-off
also provides a direct method to extract the actual NA of the optical system without resorting to fitting
wavefront distortions.

2.2.3 Localization of Atoms by Parametric Deconvolution

The algorithm used to determine the exact positions of individual atoms, which is employed within this
thesis, is described in detail in Alberti et al. [2] and embodies an improved version of the one originally
published in Karski et al. [125]. While the original algorithm was sufficient to extract the number of
lattice sites between well-isolated atoms in a one-dimensional optical lattice, it lead to unreliable results
when dealing with small clusters of atoms. However, especially the generation of low-entropy states
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presented in section 3.3.3, or the Hong-Ou-Mandel experiment presented in section 5.2, requires us to
precisely determine the position of each atom even when every lattice site is occupied.

The revised parametric deconvolution process, which retrieves the position of atoms, comprises several
stages: (1) The 1D integrated fluorescence images are divided into regions of interest (ROIs), each with a
small number of atoms. (2) The number of atoms is determined for each ROI based on the total number
of photoelectrons. (3) We create a model function of the fluorescence distribution for the given number
of atoms and (4) use it to obtain a first estimate of the positions of atoms employing a spectral-density
estimation algorithm. (5) The estimated positions provide the starting values for a non-linear least
squares estimate, which yields the location of atoms with improved precision. (6) We further enhance the
localization accuracy by an additional stage that constrains the atoms’ positions to the discreteness of the
optical lattice and merges all ROIs together.

To keep things short we will skip here the details of each stage, which can be found in Alberti et al. [2].

2.2.4 Outlook: Development of a High-NA (0.92) Objective Lens

In the preceding sections we discussed how we can use numerical tools to extract the position of individual
atoms in the 1D optical lattice with a localization precision much smaller than the lattice spacing of
433 nm, despite the fact that our optical resolution is ¥4 = 1.9 um according to the Abbe’s diffraction
limit. Nevertheless, this process is computationally demanding and, furthermore, even with our improved
algorithm it becomes unreliable for large clusters of atoms (n > 10). Hence, it is highly desirable
to further increase localization precision, which in principle can be achieved either by upgrading the
objective lens, increasing the lattice spacing, or by imaging the fluorescence of a higher excited level.
The latter, in the case of cesium, means that instead of the D, line (65 1,2 — 6P3/2), one could use the
transition 65 12 — 7Pz, with Ay = 455 nm, or the transition 6S 12 — 7P, with Ay = 459 nm. While
the maximally attainable resolution of ryax = 228 nm is tempting, in reality one is unfortunately limited
by the almost three orders of magnitude reduced fluorescence rate of these transitions in comparison to
the D, line. As time is of essence when imaging atoms — background vapor collisions lead to atom losses
— we want to image our atoms in the shortest possible time. Therefore, the lower fluorescence rate leads to
a reduced SNR, which in turn leads to a worse localization precision in comparison to the one obtained
from imaging D, fluorescence light.

Improving the localization precision by increasing the lattice spacing is a solution which has been
widely used in the cold atom community. For example the optical lattice, described in Cennini et
al. [148], is realized using a far off-resonant CO;-laser, which has a wavelength of Apt = 10.6 um. Two
counter-propagating laser beams, hence, give rise to an optical lattice with a spacing of 5.3 um. However,
this is also not an option for us, since the state-dependent transport requires us to employ a laser with
Apt = 866 nm. Nevertheless, there is another option to increase the lattice spacing: changing the angle
of the interfering laser beams. For instance, the optical lattice presented in Wang et al. [128] is formed
by blue-detuned laser beams which intersect each other at 10° AOI, giving rise to an optical lattice
spacing of 4.9 um. We recently put forward a proposal [49] in which we explain, how one can realize
state-dependent transport of cesium in two dimensions. The optical lattice presented in this proposal
makes use of the idea — to change the AOI of the interfering laser beams — which increases the lattice
spacing from 433 nm to 612 nm.

The last option is to upgrade the objective lens. According to the Abbe criterium, the optical resolution
is given by r4 = Ar/(2NA). Since we are imaging the D, transition fluorescence (1 = 852 nm) of
cesium which is trapped in vacuum (refraction index n = 1) the largest achievable numerical aperture is
NA = n sin(a) = 1, for @ = 90°, and hence the maximally attainable resolution amounts to rp,x = 426 nm.
This resolution, however, is practically unachievable because it would require us capture half of the entire
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emitted fluorescence. Instead, the best cold atom microscope has a numerical aperture of NA= 0.80 [131],
which in our case would give rise to a resolution of rNa=0.82 = 520nm. Inspired by this work, I have
designed an improved objective lens which achieves a diffraction limited resolution of 460 nm with a
numerical aperture of NA= 0.92. This objective lens will be the central part of the next generation
experiment, which is described in detail in Brakhane [149]. In the following we will discuss the
conceptual idea of this objective lens and how one can measure the optical performance of such a high
numerical aperture objective lens.

Designing a High-NA Objective Lens: Before going into the details of the lens design process, one
may ask the question why it is at all necessary at all to develop a custom high-NA objective lens, instead
of obtaining one which is commercially available. In fact, essentially every major lens design company
offers an air-objective lens with a numerical aperture of NA > 0.9. Looking closer at the specs of these
objective lenses one quickly notices that the working distance — the distance between the last surface
and the focus — is on the order or below 1 mm. Therefore, to use such an objective lens for single atom
imaging, we need to employ it inside the ultra high vacuum chamber. However, while there exist a few
vacuum compatible commercially available lens systems, to the best of my knowledge, none exist which
can be employed in a vacuum on the order of 10~!!mbar. This arises largely from the fact that these
objective lenses consist of a large number of optical lenses (typically n > 10), which are used to correct
for chromatic aberration and reduce the tolerance requirement of each lens [150].

There exist a few commercially available objective lenses with a long working distances and moderate
numerical apertures (NA < 0.7). However, these lens systems are per se also not useful for single
atom imaging, since, if we want to employ the objective lens outside of the vacuum system, we need
to compensate the aberrations arising from passing through the vacuum window. Therefore, instead
of using off the shelf available objective lenses one also requires a custom lens design. This concept
is for instance used in the group of Immanuel Bloch [132], who achieves single site resolution with a
NA = 0.68 objective lens.

Another path has recently become the state of the art to image atoms trapped in an optical lattice. It
combines a single lens inside the vacuum chamber with an objective lens outside and was pioneered
— for the cold atom community — by the group of Markus Greiner [131]. The lens inside the vacuum
chamber is hemispherical and based on a solid immersion lens (SIL). Solid immersion lens microscopy is
a technique, which — similar to oil or water immersion — makes use of a refractive index larger than one
to boost the numerical aperture and, hence, increases the optical resolution. If the object to be imaged
is located directly on the surface of the SIL, a hemispherical lens will boost the numerical aperture
of the following objective lens by the refractive index n, without introducing any optical aberration.
Using gallium phosphide (GaP), which has a refractive index of ngap > 3, Wu et al. [151] achieved a
numerical aperture of NA = 2.0. Unfortunately it is not possible to trap cold atoms directly on the lens
surface, since one would need to cool the entire lens down to a few uK. Instead a certain amount of
space in between the objective lens and the optical trap is required, such that the Casimir-Polder force
does not attract the atoms towards the lens surface. In the case of the SIL employed in the experimental
apparatus described in Bakr et al. [131], this amounts to 15 um. The optical lattice is then formed by
reflecting laser beams of the front surface of the lens. This geometry, however, would not allow us to
realize state-dependent transport. Instead, we require a working distance of at least 120 um (> 4x the
waist of the beams), to form the lattice directly in front of the objective lens by counter-propagating
laser beams [49]. While the lens design of Markus Greiners group has been successfully implemented
in a variety of other experimental setups [65, 121, 131, 134], it has one intrinsic design flaw: the SIL
inside the vacuum and the objective lens outside need to be aligned carefully with respect to each other,
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2.2 Super-Resolution Microscopy of Atoms in an Optical Lattice

Table 2.3: Summary of the new NA = 0.92 objective lens design values in comparison with the design values of
the NA = 0.29 objective lens system which is employed in the experimental apparatus at hand [54].

NA = 0.92 objective lens NA = 0.29 objective lens

Optical resolution 460 nm 1470 nm
Strehl ratio 0.99 1.00
Collection angle 134° 33°
Collection solid angle 21 % 0.60 sr 271 % 0.04 sr
Working distance 0.15mm 36.50 mm
Field of view +35um +500 um
Effective focal length 11.96 mm 36.00 mm
Depth of focus 0.5um 8.2 um
Design wavelength 852nm 852nm
Chromatic bandwidth +17 nm +400 nm
Collimated beam diameter 22 mm 16 mm

especially since the vacuum window in between the two induces aberrations depending on the alignment.
Furthermore, this alignment will change over time as all objects are all separately mounted. Therefore, a
compact ultra high vacuum compatible objective lens would be highly desirable.

Here, I present a novel lens design concept specifically tailored to the requirements of cold atom
experiments, which overcomes all of the aforementioned difficulties. The objective lens reaches diffraction
limited imaging with a numerical aperture of NA = 0.92 while employing exclusively two lenses. Its field
of view spans over 70 wm corresponding to circa 100 lattice sites. The design is depicted in figure 2.12(a)
and the details of the surfaces are given in figure 2.12(b)-(d). Instead of a hemispherical lens, we employ a
Weierstrass sphere, which — when employed for solid immersion lens microscopy — boosts the numerical
aperture of the following objective lens by a factor n? instead of # as in the case of the SIL. This greatly
reduces the requirements on the numerical aperture of the following lens system, in fact in our case the
following objective lens is simply a single aspheric lens with NA = 0.35. Both lenses are made out
of N-SF10 [152] and manufactured by Asphericon GmbH, a company specialized on manufacturing
custom lenses. We optimized the design for a working distance of 150 um to meet the above mentioned
requirement. Due to the long working distance, the Weierstrass sphere itself introduces a significant
amount of aberration, which is compensated by carefully tailoring the surface profile of the aspheric lens
up to 10th order. For this purpose we developed a MATLAB [109] ray tracing toolbox, which is used to
perform a non-linear least squares optimization of the residual optical path difference. The mechanical
stop of the Weierstrass sphere (see fig. 2.12(a)) allows to precisely set the distance between the two
lenses and, furthermore, prevents clipping of the lasers that form the optical lattice. Both lenses are
mounted with ultra high vacuum compatible glue inside a ceramic holder (Al,O3), which is manufactured
by BeaTec GmbH. We went through a vigorous tolerance function analysis of all parameters that may
deteriorate the image quality including deviations from the ideal lens surface, changes in lens thickness
or the refractive index, as well as misalignments causing a change of the lens angle or displacements
along the lateral/axial direction. This analysis revealed that despite the large numerical aperture the
lens system is surprisingly insensitive to parameter deviations. Therefore it is possible to rely on the
manufacturing tolerances (+1 um) of both, the lenses and the holder, to assemble and glue the objective
lens without monitoring the optical performance during the process. In its application the objective
lens is directly mounted inside a ultra-low birefringence dodecagonal glass cell [153], therefore, it is
important to match the thermal expansion coefficients of all involved materials (for more details see
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a
) Surface  Parameter Value
i Smm surface 1 CA 22.5mm
1 3/ - (2) RMSi < 0.1 pm
__ | 4/ 0.5” (0.005)
5/ 1 x 0.04; L1 x 0.063; E0.3
MIL S/D 10-5
surface 2 CA 22.5 mm
3/ 1(0.2)
4/ -
5/ 1 x 0.04; L1 x 0.063; EO0.3
MIL S/D 10-5
surface 3 CA 18.0 mm
1 3/ - (1) RMSi < 0.04 pm
4/ 0,5’
- 5/ 1 % 0.04; L1 x 0.063; E0.3
: : MIL S/D 10-5
L1 surface 4 CA 12.0 mm
3/ RMSi < 0.0005 pm “superpolished”
surface 1 surface 2 surface 3 surface 4 4/ -
5/ 1 % 0.04; L1 x 0.063; E0.3
b)

Surface Radius Thickness Aperture radius Glass Aspheric surface
surface 1 22.366 mm 12.00 mm 12.50 mm N-SF10 yes
surface 2 inf. 1.00 mm 12.50 mm AIR no
surface 3 10.175 mm 14.97 mm 10.0 mm N-SF10 no
surface 4 inf. 150.35 pm 10.0 mm AIR no

L + AgY? + AY + AgYS + AgY® + AoV
1—(1+k)Y?/R?)

Surface Conic constant (k) Aj Ay Ag Ag Ao

surface 1 —0.651 - 1.33x107%  —290x 1078 286 x 10710 —1.47 x 10712
c)

Surface Type Wavelength AOI Reflectivity Polarisation

surface 1-3 Anti Reflection ~ 845nm - 898 nm 0°-32° R <0.5% p, s

surface 4 Anti Reflection ~ 845nm - 898 nm 0°-67° R < 0.5% p, s

Reflection 1025 nm - 1070 nm 0°-5° R > 98% p, s

Figure 2.12: Summary of the high-NA (0.92) objective lens: (a) section drawing of the lens design consisting
of an aspheric (left) and a Weierstrass-sphere solid immersion lens (right) placed in a ceramic holder (grey); (b)
surface parameters of the four lens surfaces; the aspheric surface coefficients A; of surface 1 are defined according
to the surface equation z; (c) details of the surface coatings: all surfaces have an anti reflection coating for 845 nm -
898 nm, additionally surface 4 is reflective for 1 064 nm; (d) surface roughness parameters according to ISO 10110:
3/ surface form tolerances, 4/ Centering Tolerances, 5/ Surface Imperfection Tolerances.
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2.2 Super-Resolution Microscopy of Atoms in an Optical Lattice

Brakhane [149]). A summary of the microscope lens properties in comparison to the currently employed
one is given in table 2.3. It is noteworthy that the objective lens is specifically designed to image cesium
fluorescence light at 852 nm and experiences rather strong chromatic aberrations resulting in a diffraction
limited bandwidth of 35nm (837 nm - 872nm). However, this chromatic bandwidth indeed exceeds
the expectations one typically obtains when employing a Weierstrass sphere [151]. Furthermore, it is
possible to adjust the lens design — by modifying the surface of the aspheric lens — allowing diffraction
limited imaging at other wavelengths®.

Our developed objective lens provides a compact and robust solution to acquire images of atoms
trapped in an optical lattice with a resolution that is close to the maximally physically achievable
one. Especially the robustness of the objective is not to be underestimated as experimental setups are
becoming continuously more complex. Just recently a novel lens concept by Gissibl et al. [154] has
been introduced, which may lead to extremely compact and robust objective lenses using 3D printing
techniques. However, the currently obtainable numerical apertures and the imaging quality, in general,
do not meet our standards.

Characterizing a High-NA Objective Lens: Characterizing the optical performance of a high-NA
objective lens is a demanding task in itself, since it is not trivial to find an ideal point source which
can be imaged. While there exist a variety of state of the art approaches [155], they require substantial
experimental effort. Trapped atoms in optical lattices are ideal point like radiation sources, even though, it
is desirable to characterize an objective optically before the entire experimental apparatus comes together.
Consequently, Felix KleiB3ler tested the suitability of different point sources in his master thesis [156],
including fast electron beam manufactured pinholes, light scattering nano particles (PMMA and TiO,),
and an aluminum coated tapered tip of an optical fiber. It turns out that the tapered fiber resembles
best a point like radiation source, and hence we will only discuss the details of this measurement. The
advantages and disadvantages of the other point sources can be found in [156].

Aluminum coated tapered optical fibers are typically used for scanning near-field optical micro-
scopy [157-159](SNOM) and, therefore, can be obtained commercially from various companies. In
our case we use a SNOM-fiber with a tip diameter of approximately 200 nm’. The experimental setup
to image the radiation from a SNOM-fiber is depicted in figure 2.13(a): the light that is gathered by
our high-NA objective lens passes through a motorized iris'” and is then focussed onto a beam profile
CCD-camera'! using a tube lens with a focal length of 750 mm. The SNOM-fiber is mounted on a 3D
translation stage'?, which allows to adjust the position precisely while simultaneously observing the
image from the CCD-camera. Figure 2.13(b) shows the recorded image of the SNOM-fiber radiation.
The corresponding azimuthally integrated fluorescence distribution is shown in 2.13(c) and the radial
modulation transfer function in 2.13(d). The overall shape resembles an Airy disc which one would
expect when imaging a perfect point source with a low numerical aperture objective. However, a closer
inspection reveals that the rotational symmetry is slightly broken and that the radius of the recorded
distribution is a bit larger then the one from an ideal Airy disc. The crucial question is whether these
deviations arise from optical aberrations or whether they are related to the high numerical aperture and
the SNOM-fiber. In the following we will discuss how one can extend the theoretical model presented in
section 2.2.2 to incorporate additional effects. However, let us first recapitulate that mathematically, the

8 Using the MATLAB toolbox we confirmed that the same design works for imaging fluorescence light of the cesium
6S 12 — 7P, transition with A¢ = 459 nm.

? Lovalite: E50-MONO780-AL-200

10 Owis: IBM 65

1 Ophir: Spiricon LW230

12 Thorlabs: MAX302/M
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Figure 2.13: (a) Optical setup employed to image the tip of a SNOM-fiber. (b) Two-dimensional point spread
function recorded with the beam profile CCD-camera. (c¢) The solid blue line represents the azimuthally integrated
point spread function, the dashed red line the azimuthally integrated fitted model based on a wavefront expansion
in Zernike polynomials, and the solid red line a azimuthally integrated simulated point spread function assuming
the SNOM-fiber is perfectly in focus. The inset attests the quality of the fit. (¢) Corresponding modulation transfer
functions of the azimuthally integrated point spread functions.

point spread function is defined by:
, 2
PSF = |7 [P(x.y) EoCx,p) e K] (2.32)

where 7 is the 2D Fourier transformation, P the pupil function given by the aperture, Ey the electric field
amplitude, and R the wavefront of the collimated beam. As before, the wavefront of the beam can be
expressed by an expansion in low-order Zernike polynomials.

It is known that aberration free objective lenses with high numerical apertures, in general, do not
produce a collimated beam with a homogeneous intensity distribution even when gathering light from a
perfect point emitter [160, 161]. Instead the intensity distribution of the collimated beam depends on the
so-called apodization. When designing an objective one can always adjust the lens surfaces such that the
on-axis optical path difference amounts to zero, which leads an aberration free image. However, it is
physically impossible to fulfill this criterium for the entire field of view. Instead, one can only make the
objective lens insensitive to certain aberration. One example is the so-called Abbe’s sine apodization
condition, where we demand that the objective lens is in first order insensitive to comatic aberration over
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Figure 2.14: (a) [lustration of the apodization arising from our high-NA objective lens system. Apodization occurs
when collimating an isotropic radiation source with a high-NA lens, which leads to a radially inhomogeneous beam.
(b) The red line represents a point spread function for an NA = 0.92 objective lens with the apodization effect and
the blue line without. Apodization according to the Abbe’s sine condition leads to a narrower PSF.

the field of view [162]. Mathematically, therefore, an ideal lens that fulfills the Abbe’s sine condition can
be described by a spheric principle plane (see fig. 2.14(a)) and its resulting apodization function — the
function that converts the ideal point source into a collimated beam with an inhomogeneous intensity
distribution — is given by:

Anbbe(@) = (2.33)

cos(a)
Besides the Abbe’s sine condition there also exist other conditions, e.g. the Herschel condition (to cancel
astigmatism), or the Helmholtz condition (to achieve a constant magnification over the field of view) [162,
163]. Using the Matlab ray tracing toolbox we analyzed the apodization of our objective lens, which
agrees nicely with the Abbe’s sine condition. This means that the collimated beam has more intensity
towards the edge (see fig. 2.14(a)), and hence when focussed with a low numerical aperture tube lens
leads to a point spread function which is no longer described by an Airy disc. To incorporate this effect in
our mathematical model (see eq. (2.32)), we convert the apodization function into Cartesian coordinates
and replace the constant electric field Eqy with:

Eo(x,y) = Eg \Aabbe(X,Y) . (2.34)

Figure 2.14(b) shows how the apodization condition alters the PSF of our high-NA objective lens. Since
the Abbe apodization criterium gives more relative weight to the outer part of a collimated beam, the PSF
has a narrower central peak in comparison to the Airy disk.

An ideal point source is defined by its radially homogeneous emission of light. While the SNOM-fiber
comes close to this for moderate emission angles, Obermiiller et al. [164, 165] showed that this is not the
case for emission angles of more than 10°. In general, transmission of light through a sub-wavelength
aperture is a complicated process which requires solving Maxwell’s equations analytically [166]. Nev-
ertheless, the measurements presented in Obermiiller et al. [164, 165] reveal that the radial intensity
distributions can be well approximated by a Gaussian function for angles up to 90°. Furthermore, in the
case of a linear polarization the Gaussian distribution parallel to the dipole axis is narrower than the one
perpendicular to it. For our 200 nm SNOM-fiber tip this amounts to a RMS with o) = 50 degree and
o, ~ 65degree. The Gaussian distributed emission leads to the exact opposite effect than the apodization
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Figure 2.15: (a) Illustration of the Gaussian distributed radial emission from a SNOM-fiber. The solid red line
represents a distribution with a RMS of o; = 50° and the dashed red line represents a distribution with RMS of
o, = 65°, respectively. (b) The red line represents a cut, parallel to the dipole axis, through PSF of an NA = 0.92
objective lens, whereas the blue line represents the a cut, perpendicular to the dipole axis, through PSF. The blue
curve is essentially identical to an ideal Airy disk, whereas the red line is slightly wider.

function: the collimated beam has more intensity towards the center of the beam (see fig. 2.15(a)),
and hence we expect a broader central peak of the PSF. Similar to the apodization function, we can
incorporate this effect by further modifying equation (2.33):

Eo(x.) = Eo \[Aase(t: 1) foass (5,0, 5.0, (2.35)

where fGauss 18 @ 2D Gaussian distribution with the RMS widths o, and o,. The red solid line in
figure 2.15(b) shows a cut through the PSF for an axis parallel to the linear polarization. The perpendicular
axis is not shown since the curve shows visually no difference compared to the one of an Airy disc
(blue line). The different emission profiles of a linear polarization, hence, lead to an asymmetric PSF.
However, we can recover a symmetric PSF in our measurements by injecting a circular instead of a linear
polarization into the SNOM-fibre [167], which is possible since around 97% of the injected polarization
is preserved in the emission at the fibre tip [164].

Using equation (2.32) in combination with the electric field given in equation (2.35) we performed
a non-linear least squares fit of the simulated PSF to the measured one shown in figure 2.13(b). Fig-
ure 2.13(c) shows the azimuthally integrated measured PSF (solid blue) as well as the azimuthally
integrated one obtained from the fit (dashed red), which agree remarkably well. The fit confirms
that the objective lens works diffraction limited (Strehl ratio = 0.81) for a numerical aperture of
NA = (0.938 + 0.001), and hence achieves a resolution of 453 nm. A detailed list of the Zernike
coefficients is given in Tab. 2.4, which reveals that the predominant aberration comes from defocus. The
defocus is not an intrinsic problem of the lens design, but instead related to the fact that the SNOM-fiber
was not perfectly positioned in focus. The short depth of focus of the objective lens (500 nm) makes
it indeed difficult to experimentally position the SNOM-fibre exactly in focus, since the employed
translation stage has a positioning precision on the order of 100 nm. Later, when imaging atoms in the
optical lattice, this problem vanishes (see [149] for more details). The solid red curve in figure 2.13(c) —
obtained from our theoretical model — shows the PSF in the case where the SNOM-fiber is exactly in
focus, while the other aberrations are as given in table 2.4. The corresponding Strehl ratio amounts to
0.98, which nicely agrees with the theoretical prediction from the lens design.
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Table 2.4: Result of the wavefront fitting to the measured PSF expressed in terms of low-order Zernike polynomials.
The overall wavefront distortion is obtained by adding the different contributions in quadrature.

Defocus Astigmatism Coma Trefoil ~ Spherical secondary
Astigmatism
adint Qo e G (63 @D (42)

(radial, azimuthal)

RMS wavefront

distortion (A units)  007(3)  =0.010(1)  -0.004(1) —0.001(1) 0.006(1)  —0.015(1)

In the presented analysis we neglected a possible contribution from the vectorial nature of the polariza-
tion, which can become important for high-NA objective lenses [155]. However, referring to the analysis
presented in Novotny et al. [168], where the PSF is obtained by starting with a vectorial dyadic Greens
function for a collection angle of 70°, we can conclude that the predominant changes of the PSF arise
from the apodization function as well as from characteristics the radiation source. Of course, if one wants
to use our high-NA objective lens to address individual atoms locally using a focussed laser beam, these
effects have to be taken into consideration. However, this needs to be the subject of further studies.

2.3 Coherent Quantum State Manipulations

The ground state hyperfine levels |F = 4) and |F = 3) of cesium are ideal candidates for a qubit system
since they have an extremely narrow transition [169], and hence a coherent superposition of these states
can in principle last for a long time. The narrow transition is in fact the reason that since 1967 cesium is
used to define the second. However, while the current cesium atomic fountain clocks reach an uncertainty
down to 5 x 10716 [170]'?, recent experiments have reached an almost two orders of magnitude lower
uncertainty, e.g. clocks based on a single trapped 7! Yb* ion [172], or 87Sr optical lattices [173, 174].
Therefore, it is expected that the definition of the second may change in the near future [175].

The two hyperfine states of cesium are separated by Avgr = 9.19263177 GHz, which is convenient
from an experimental point of view, since this frequency can be easily generated using off the shelf
microwave generators. For most of the experiments presented in the following we require a qubit,
a closed two-level system. Ideally we would choose the so-called clock states (|[F = 4, mr = 0) and
|F = 3,mp = 0)), since they are to first order insensitive to magnetic field fluctuations, and hence preserve
the quantum information much longer [176]. However, the concept of state-dependent transport itself
requires us to choose a state with a non-vanishing angular momentum (see section 2.1.3). Therefore, we
choose the outermost cesium hyperfine sublevels — |T) (= |F =4,mp =4)and |]) = |F = 3,mp = 3) -
as our qubit states, which realize a pseudo spin-1/2 system. In the following sections we will elucidate
how to efficiently prepare, manipulate and detect the qubit state of atoms trapped in our optical lattice.

2.3.1 State Initialization and Detection

During the fluorescence image acquisition we deliberately cancel all residual DC magnetic fields [169] —
such as the earth magnetic field — using a set of six compensation coils. The trapped atoms will, hence,
undergo o, m, and o* transitions, which lead to an equal occupation of the nine |F = 4) hyperfine
sublevels. Throughout the subsequent 100 ms long adiabatic lowering of the optical lattice (see sec. 2.1.2)

13 The noise performance of atomic clocks is typically given as the Allan variance [171]
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atoms further off-resonantly scatter photons from the optical lattice (see sec. 2.4.1), which then equally
populates all |F' = 4) and |F = 3) hyperfine sublevels. To initialize — and subsequently manipulate —
atoms in |T) we employ optical F- and mp-state pumping [177, 178], which reaches a fidelity of > 99 %'*.
The mp-state pumping is achieved using a o*-polarized laser beam 25 MHz blue detuned from the
|F = 4) — |F’ = 4) transition, which is overlapped with the optical lattice and parallel to the quantization
axis. The latter is defined using the six compensation coils to generate a guiding magnetic field with a
strength of |By| = (2.95 +0.02) G. It is noteworthy that the state initialization fidelity critically depends
on the overlap of the quantization axis with the laser beam and the purity of the circular polarization
(IT > 20000"%). The mp-state pumping beam is generated by extracting some of the unshifted molasses
cooling light, generated by the IF diode-laser locked on the crossover transition |F = 4) — |F’ = 3) and
|F =4) - |F’ =5) [91] (see sec. 2.1.1). The F-state pumping is achieved by extracting light from the
MOT repumping laser — locked on the |F = 3) — |F’ = 4) transition — and by overlapping the extracted
fraction with the mpg-state pumping laser beam. Using 10 nW of F- and 30 nW of mp-state pumping light
for a duration of 20 ms ensures that > 99 % of the atoms accumulate in |T), which is the dark state of the
optical pumping process. Further information about the optical setup can be found in Steffen [181].

The qubit state of trapped atoms can be detected either by the traditional push-out technique [182], or
by a newly developed loss-free one, which utilizes the state-dependent optical lattice. The latter can only
be utilized for small, well separated ensembles of atoms trapped in the optical lattice (see sec. 3.3.1),
whereas the former is achieved by applying a short laser pulse resonant with the |F = 4) — |F’ = 5)
transition (40 uW for 150 us). This pulse pushes atoms — via radiation pressure force — in the |T) state out
of the optical lattice, while not affecting atoms in the || ) state with an efficiency of > 99 %. The maximum
efficiency in the shortest time is obtained using a laser beam which is o -polarized and perpendicular
to the optical lattice [183]. However, this would require us to rotate the quantization such that it is
also perpendicular to the optical lattice. While this is certainly possible, it was not possible to observe
an improved efficiency using our experimental apparatus [53]. Also, by leaving the quantization axis
constant we can strongly low pass filter the current that drives the compensation coils, and hence reduce
fluctuations of the guiding magnetic field.

2.3.2 Coupling the Qubit States and its Representation on the Bloch Sphere

An atom initialized in |T) can be coupled by microwave radiation to any of the other mp hyperfine
sublevel. The interaction between the magnetic component of the oscillating microwave field and dipole
moment y of the atom is well explained by a semiclassical approximation. Since we engineered the
state-dependent transport for the qubit states |T) and || ) (see sec. 2.1.3), we are only interested in coupling
these two, and hence we can reduce the Hilbert space of all internal atomic states to one of a two-level
system. The wave function of an arbitrary superposition state is then described by

) =crIT)+c L), (2.36)

where the complex amplitudes ¢y and ¢ fulfill |CT|2 + |c l|2 = 1. Experimentally, the coupling to other
mpr hyperfine sublevels is prevented through the strong magnetic guiding field defining the quantization
axis, which lifts the degeneracy of the mp sublevels. For a field strength of |Byg| = 3 G two consecutive
levels are spectrally separated by 1.05 MHz [184]. The dynamics of such a driven pseudo spin 1/2 system
are described by the optical Bloch equations [185], which are obtained from solving the Heisenberg

14 The fidelity in this case is a measure of the accuracy to reach the desired state and not a measure of the distance between
density operators as defined in [179]
15 The purity is defined as the ratio of o* /o=~ polarized light, for more details see [180]
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Figure 2.16: Bloch sphere representation of a two-level system. (a) The north pole corresponds to a |T) state. (b)
lustration of a spin-flip (m—pulse) operation which turns |T) into ||) and (¢) of a 7/2—pulse which creates an equal
superposition state.

equation of motion using the rotating wave approximation. By additionally incorporating population and
coherence relaxation effects as dampening terms [182] — similar to diffusion terms in nuclear magnetic
resonance [186, 187] — we derive the following set of partial differential equations:

0 0
<a—’:> = O sin (omw) (W) + 6(v) — ;—’:) , (2.37)
0 1)
<a_l;> = —6(u) + Og cos (gnw) (W) — }—’j (2.38)
a _
<8—f> = —Og cos (gnw) (v) — Qg sin (gnw) () — <“)>T—1w° , (2.39)

where w describes the population, while # and v comprise the coherence of the qubit state. Here we
introduced the detuning 6 = w — wy, the Rabi frequency of the microwave field Qr = uBph including its
phase ¢mw, the population relaxation time 77, and the coherence relaxation time 75. Please note that
the Rabi frequency of the microwave field Qg can be time dependent. A closed two-level system — the
states of which have a neglectable energy difference — would eventually decay into a statistical mixture
with equal relative occurrences of |T) and ||) (wp = 1/2). However, as we will see in section 2.4.1 this
does not hold true for cesium which is trapped in an optical lattice. The three constituents (w, u, and v)
form the so-called Bloch vector, which enables us to visualize the temporal evolution of a qubit state
on the Bloch sphere (see fig. 2.16(a)). In fact, the Bloch vector is related to the wave function given in
equation (2.36) via the density matrix p of the two-level system:

u=pi+por, v=1ilpo —pio), and w = po — P11 - (2.40)

Let us for now consider a decoherence free system (7} = T, = o) which is resonantly driven (6 = 0)
with omw = 0. The amount and physical origin of the population and the coherence relaxation time 7
and T, for cesium trapped in a state-dependent optical lattice is later discussed in section 2.4. These
assumptions greatly simplify the optical Bloch equations (2.37)-(2.39), such that the temporal evolution
of the population can be analytically solved:

w(t) = —cos (Qr(D 1) . (2.41)
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Equation (2.41) is of particular experimental relevance, since a precise control of the microwave radiations
field strength — and hence the Rabo frequency Qgr(#) — for a certain duration At enables us to engineer
any desired qubit superposition state. For instance, if we choose f dt Qr(t)t = m we can invert the qubit
state e.g. from [T) — ||) (see illustration in fig. 2.16(b)), while a value of 7r/2 puts an initial pure state in
an equal superposition of |T) and |]) (see fig. 2.16(c)). The additional control of the microwave phase
emw allows us to also choose the rotation axis of the Bloch vector. This degree of freedom is used in
section 2.4.2 to scan the phase in a Ramsey fringe measurement.

To create the required 9.2 GHz microwave frequency, we mix'© the signal output of a vector generator!”,
which produces 160 MHz, with a 9.04 GHz stable constant frequency from a PLDRO'® (Phase-Locked
Dielectric Resonator Oscillator). The combined signal passes through an analog PIN diode attenuator'?,
is amplified to a maximum power of 41 dBm?, and directed to the atoms by an open metallic waveguide,
which is positioned in close vicinity of the vacuum glass cell. The maximally attainable Rabi frequency
of this experimental setup amounts to 58 kHz. The envelope of the microwave radiation can be shaped
either by the PIN diode attenuator on timescales > 20 us, or — in order to create shorter rectangular
pulses — by using an external trigger generator’! with a timing resolution of 100 ns. This trigger generator
directly gates the output of the vector generator. Phase and frequency of the microwave radiation can
be controlled through the vector generator using an analog input which is connected to the laboratory
computer. More details on the experimental setup can be found in references [53, 181] and information
on the incorporation of the setup in the newly developed control system is given in Zopes [188].

2.3.3 Microwave Driven Global Spin Rotations

In our laboratory, microwave spectroscopy is a routinely employed tool, which enables us to determine the
exact transition frequency between the two qubit states and, furthermore, also allows a characterization
of the spin flip efficiency. For experiments with single atoms we commonly employ two different types of
addressing m-pulses: a fast rectangular shaped pulse and a spectrally narrow Gaussian shaped one. The
former achieves a spin flip in the shortest possible time using the maximally attainable Rabi frequency
(Qr = 58kHz) for a duration of t ~ 9us. The fast square m-pulse also has the advantage that it is
spectrally broad, which makes it rather insensitive to small detunings of the qubit transition frequency. In
fact, the qubit transition frequencies of different atoms are generally not expected to be equal: spatially
and temporally varying magnetic fields lead to changing hyperfine splittings while the fact that atoms are
not yet cooled into their vibrational ground state leads to varying light shifts [182, 189]. The Gaussian
m-pulse, on the contrary, is used if we desire a better spectral resolution, as for example when locally
addressing individual atoms (see sec. 2.3.4). Similar to the Fourier limit, in principle it is also possible
to spectrally narrow the square pulse by reducing its Rabi frequency while adjusting the time — the
effect of the Rabi frequency on the spectral resolution is generally referred to as power broadening [190].
However, this has two experimental drawbacks: The sinc-like nature of the square m-pulse spectrum
(see fig. 2.17(a)) will always lead to small side peaks, which are undesirable for local addressing pulses.
Furthermore, the qubit state is most sensitive to dephasing decoherence for an equal superposition while
it vanishes for pure states. Hence, the Gaussian m-pulse shields the qubit against dephasing decoherence,
since it spends less time in a state close to the equator of the Bloch sphere. Therefore, the qubit transfer

16 MITEQ SSM0812LC2CDC

17 Agilent: E4432B ESG-D

'8 MITEQ: PLDRO-10-09040-3-15P

19 MITEQ MPAT-08001200-60-10

20 MITEQ: AMF-6B-08500950-40-41P-TTL

21 Agilent: 33220A Function / Arbitrary Waveform Generator
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Figure 2.17: Exemplary microwave spectra obtained by (a) employing a 9 us long square pulse and (b) employing
a pulse the amplitude of which is Gaussian shaped with a RMS of 30 us. The red lines in both figures represent
simulated spectra, obtained by numerically solving the Bloch equations (2.37)-(2.39) with T} = 100 ms and
T> = 250us. The span of both figures is deliberately chosen to be identical in order to highlight the spectral
difference of the two pulses.

efficiencies of Gaussian m-pulse are higher than those of a square -pulse with similar spectral resolution.
It is noteworthy, that while the spectral resolution of a microwave pulse can theoretically become infinitely
narrow for a system without decoherence, one will ultimately always be limited by the natural line width
of the qubit transition (circa 100 Hz).

The histogram in figure 2.17(a) exemplarily depicts a measured microwave spectrum using a square
m-pulse, whereas the histogram in figure 2.17(b) represents a spectrum obtained from a Gaussian w-pulse.
The red solid line in both figure 2.17(a) and figure 2.17(b) shows the result from a non-linear least squares
fit of a simulated spectrum — obtained by numerically solving the Bloch equations (see eq. (2.37)-(2.39))
— to the measured spectrum. This fit allows us to extract the transfer efficiency and spectral width of the
pulses which are summarized in table 2.5. Both microwave spectra are recorded using the following
experimental procedure: we load an ensemble of atoms into the optical lattice, determine their initial
number via fluorescence imaging, lower the optical lattice, and initialize the ensemble in |T) by means
of optical pumping. Subsequently, the atoms are exposed to a microwave pulse the frequency of which
varies each iteration. Using the push-out technique the qubit is then projected onto either |T) or ||) and in

37



Chapter 2 Experimental Techniques

Table 2.5: Summary of the fast square 7—pulse and the gaussian m—pulse. The values are obtained from the
microwave spectra shown in figure 2.17. The duration of the Gaussian pulse is given as the 1/ v/e time of the pulse.

Square pulse Gaussian pulse
Pulse duration At 9us 30us
Rabi frequency Qg 58 kHz -
Transfer efficiency 98 £1)% 96 £1)%

Central peak FWHM  (96.0 + 1.0)kHz (18.0 +£0.5)kHz

1
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Figure 2.18: Microwave radiation induced Rabi oscillations between the |T) and |]) state with an oscillation
frequency of 48 kHz. The red line represents a fit without accounting for decoherence, since the contrast of the
oscillation does visibly not decay after almost 30 oscillations.

the case of the former removed from the optical lattice. To detect the remaining fraction of atoms we
again rely on fluorescence imaging. The microwave frequency is increased each iteration until it reaches a
user defined maximum, at which the entire procedure is repeated until a spectrum with sufficient statistics
is recorded (typically 10 repetitions where on average 20 atoms are loaded into the optical lattice).

The transfer efficiency of the rectangular 7-pulse is in first order insensitive to small deviations in the
duration At (see eq. (2.41)). However, this is exactly opposite for the rectangular 7/2-pulse, which is
used to create an equal superposition of the qubit states. Nevertheless, e.g. the experimental violation of
the Leggett Garg inequality — presented in chapter 4 — relies on a precisely adjusted /2 condition. For
this purpose we employ Rabi oscillation measurements, where we scan the pulse duration A¢, while the
frequency remains on resonance. Figure 2.18 exemplarily shows the result of such a measurement for a
Rabi frequency of Qr = 48 kHz. By fitting a sinusoidal curve to the measured values (red line) we can
extract the required duration Az, which amounts to At;/» = (4.82 +0.01) us and Az = (9.60 £ 0.01) us.
It is noteworthy, that the amplitude of the Rabi oscillation does visually not decrease even after more
than 25 oscillations, which indicates a long coherence time. Rabi oscillations, however, are intrinsically
not particularly sensitive to decoherence, since they make use of so-called dynamic decoupling [191,
192]. Therefore, we employ Ramsey spectroscopy in the following to study the decoherence time in
more detail.

2.3.4 Microwave Driven Local Spin Rotations

Local addressing of individual atoms trapped in an optical lattice embodies one of the milestones on the
path towards a scalable quantum computer [67]. Up until today a variety of experimental realizations
achieved such addressing of individual atoms. Initially most experiments were based on incoherent
methods including a focussed ion beam [193], a focussed near-resonant laser beam [194], and crossed
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Figure 2.19: Position dependent microwave addressing of atoms using a magnetic field gradient. (a) Averaged
image of 20 initial distributions of atoms which are trapped in the optical lattice. (b) Averaged image of the 20
distributions after employing a position dependent Gaussian shaped microwave r—pulse and the push out beam.
(c) Vertically integrated image, normalized to the initial distribution. The red line represents a Gaussian fit. (d)
Resulting magnetic field gradient calibration after repeating several position dependent microwave spectra for
different transition frequencies, each represented by a blue dot. The black square represents the data shown in
(a)-(c). Error bars are smaller than the blue dots.

optical lattices [195]. More recently, three common experimental strategies have been established,
which also allow coherent operations: one can use a pair of focussed Raman lasers to optically induce
the qubit transition [196, 197]; a magnetic field gradient to realize position dependent qubit transition
frequencies, which are addressed by microwave radiation [126, 198, 199], or hybrid approach combining
the advantages of both by using a focussed off-resonant laser beam to locally shift the qubit transition,
which is then addressed by microwave radiation [67, 128, 200].

While the latter is of great interest for the newly developed high numerical aperture objective (see
ref. [149] for details) the experiment at hand comprises a set of anti-Helmholtz coils which can be used
to generate high magnetic field gradients along the optical lattice. The magnetic field gradient addressing
technique was pioneered for trapped ions [198] and shortly after used by our group to imprint patterns
of neutral atoms with single lattice site resolution [126]. Single site addressing, however, requires the
maximally attainable magnetic field gradient of 120 G cm™!, which in turn requires a rather long pause
(> 50ms) until the field gradient is stable enough to ensure high addressing efficiencies. Since we cannot
allow such long pauses e.g. for the atomic Hong-Ou-Mandel experiment (see sec. 5.2), we restrict ourself
to a magnetic field gradient of 11.6 Gem™" within this thesis. This enables us to raise the magnetic
gradient after the state initialization within 10 ms — short enough such that only few of the qubits change
their state by scattering optical lattice photons (see sec. 2.4.1).

To calibrate the magnetic field gradient we again employ microwave spectroscopy. In this case
we initially load as many atoms as possible into the optical lattice (see fig. 2.19(a)), and employ the
microwave spectrum sequence outlined above, with the addition that the magnetic field gradient is applied
during the addressing pulse. Since the transition frequency of each atom increases linearly along the
optical lattice (see also section 2.3.2), the fluorescence image recorded after the push-out operation
reveals directly the entire spectrum encoded in the position along the lattice (see fig. 2.19(b)). The central
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addressing position, for a certain microwave frequency, can be determined by fitting a Gaussian function
to the ratio of the first and second fluorescence image (see fig. 2.19(c)) — more precisely to the average
of several repetitions. Therefore, by using this method for different microwave frequencies, we can
calibrate the magnetic field gradient (see fig. 2.19(d)), which amounts to Av,,2 = (1.251 +0.006) kHz
and corresponding 11.6 G cm™' for a coil current of 4.1 A.

The magnetic field gradient calibration will be used in chapter 3 and chapter 5 to address individual
trapped atoms, which is one of the constituents to sort neutral atoms in our state-dependent optical
lattice. Unfortunately, the low magnetic field gradient prevents us from addressing atoms in neighboring
lattice sites. Instead, for a Gaussian m-pulse with a FWHM of 18 kHz we require a minimal separation of
dvw = 19 lattice sites to ensure a probability < 1% that local addressing pulses spin-flip a neighboring
atom. Furthermore, the magnetic field gradient induces additional decoherence, and hence limits the
transfer efficiency to (86 =+ 1) % instead of (96 + 1) % as reported above.

2.4 Population and Coherence Relaxation of Qubits in
Polarization-Synthesized Optical Lattices

In the foregoing sections we already identified several mechanisms which limit the lifetime of our qubit
state. We will summarize and complete the list in the following, elaborate in more detail the physical
origin of spin relaxation, and discuss experimental procedures which allow us to quantitatively extract
their value for the apparatus at hand. While we have not yet formally introduced the polarization-
synthesized optical lattice, all of the following measurements are obtained using our novel optical
lattice technique, which is introduced in chapter 3. Hence, besides our fundamental interest, they
serve to benchmark the impact of polarization-synthesized optical lattices onto the qubit properties. In
section 2.3.2 we phenomenologically introduced the concept of the qubits’ population and coherence
relaxation as dampening terms in the optical Bloch equations (2.37)-(2.39). We will maintain this
discrimination in the following discussion, since it is possible to separate their physical origin.

2.4.1 The Population Relaxation Time T;

The relaxation rate of neutral atom’s hyperfine sublevels has been studied in detail over the last two
decades. In fact, the spin relaxation of cesium in a magnetic trap induced by inelastic collisions prevented
the first attempt of creating a BEC [201]. On the contrary, the hyperfine sublevel lifetime of neutral atoms,
which are trapped in an off-resonant optical dipole potential, is not limited by collisions but instead
by off-resonant scattering processes with photons of the dipole potential [202, 203]. The experimental
sequence to measure these relaxations is rather straightforward with the tools we discussed earlier: similar
to the microwave spectrum sequence, we load and image an ensemble of atoms in the optical lattice
which is subsequently initialized in |T) via optical pumping in the 74 uK deep lattice. Instead of applying
a microwave pulse, we hold the atoms for a certain duration, before applying the push-out pulse. Hence,
those atoms whose hyperfine level has changed from |F = 4) to |F = 3) are not removed from the optical
lattice and appear in the second fluorescence image. The blue dots depicted in figure 2.20 represent
the fraction of atoms which occupy |F = 3) hyperfine sublevels for increasing hold times between state
initialization and detection. It is noteworthy, that the values presented in figure 2.20 have been corrected
by the atom losses one expects from heating of the optical lattice as discussed in section 2.1.2.

At first sight the decay of the qubit population seems to be exponential, and indeed, if we take a page
out of the NMR (nuclear magnetic resonance) playbook [186], we can describe the population decay of a
spin 1/2 system — the dynamics of which follow the Bloch equations (2.37)-(2.39) — with the following
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Figure 2.20: Population relaxation measurement of atoms which are initialized in |T). The dashed black line
represents a fit using the simple model given in equation (2.42), whereas the red solid line is obtained by
numerically simulating the temporal evolution of the |T) state using calculated scattering rates.

model: )
Py(t) = Pgq — (Peq — P(0)) € 7T, (2.42)

where Py, (?) is the relative population of the [T) / [|) state at time 7, Pgq the equilibrium ratio of |T) and
|1}, and T the 1/e population decay time. Here we already included that the initial state preparation
may not be perfect, and hence a fraction of atoms starts in the opposite state (P;(0)). For a perfect spin
1/2 system the states of which have a neglectable energy difference we would expect an equilibrium
ratio of Pgq = 1/2. The dashed black line in figure 2.20 represents the result of a non-linear least
squares fit of equation (2.42) to the measured data with 71 = (92 £ 12) ms, P(0) = (0.5 £ 0.5) %, and
Pgq = (39 + 2) %. While the fitted curve shows a systematic discrepancy to the measured data, the
extracted 7 time agrees well with the values reported in Karski [53] for the same experimental apparatus.
It is also noteworthy, that the extracted equilibrium population differs significantly from 1/2. This is,
however, not surprising, since spontaneous scattering events can couple the qubit states to any other
cesium hyperfine sublevel. It was shown that in the case of a linear polarized optical lattice with a parallel
quantization axis spontaneous scattering of lattice photons leads to an equal population of all hyperfine
sublevels, and hence for cesium Pgq = 7/16 [69]. One explanation for the discrepancy may be that the
experimental procedure outlined above does not probe the qubit states, but instead only differentiates
between the population in |F = 4) and |F' = 3). Below we will discuss how one can instead derive the
temporal evolution of all hyperfine sublevels from an ab initio calculation, which nicely agrees with the
experimental data (see red line in fig. 2.20).

Following the path outlined in Cline et al. [203] we can derive the Kramers-Heisenberg formula
for our experimental situation, which allows us then to quantitatively calculate the scattering rates of
all hyperfine sublevels. Scattering of light consists in general of two processes — the absorption of
an incoming photon and the emission of the scattered one — and hence, they are processes of second
order radiative transitions, which are described by the generalized Fermi’s golden rule [74]. Using
the multilevel version of equation (2.7) and after some calculus (see appx. sec. B.4) we obtain the
Kramers-Heisenberg formula given in equation (B.31). This formula depends only on the properties of
the optical lattice (wavelength Apr, intensity Ipt, polarization &pr, and the direction of the quantization
axis) and the matrix elements between the ground state and all possible excited levels. The latter can be
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Figure 2.21: (a) Ground state hyperfine energy levels of cesium including the D and D, transition. The arrows in-
dicate all possible two-photon scattering transitions for an atom in |T) arising from off-resonantly scattering a photon
with the state-dependent optical lattice. (b) Individual scattering rates, obtained from the Kramers-Heisenberg
formula (see appx. sec. B.4). (¢) The red line represents the temporal evolution of a qubit initially prepared in |T),
the blue line shows the contribution in || ), and the red dashed line the contribution in |F' = 4, mp = —4).

calculated using the Wigner-Eckart theorem (see appx. sec. B.3) and the values of the reduced matrix
elements given in Steck [184]. The optical lattice — as discussed in 2.1.1 — is formed by a pair of
linear polarized counter-propagating laser beams with Apr = 866 nm, therefore, the quantization axis is
perpendicular to the polarization vector. The intensity of the optical lattice at the focal position is given
through the power in each laser beam Ppr = 6 mW and the waist wpr = 17 um (see also fig. B.1(b) in
appx. sec. B.1). Figure 2.21(a) shows the allowed two-photon scattering transitions for the |T) state (see
eq. (B.28) in appx. sec. B.1 for dipole transition selection rules), whereas their absolute and relative values
are summarized in table in figure 2.21(b). Correspondingly, figure 2.22(a) shows the allowed two-photon
scattering transitions for the || ) state, whereas their absolute and relative values are summarized in table
in figure 2.22(b). The total scattering rate of each qubit state amounts to 12 Hz. Conventionally, we
distinguish two types of scattering events: elastic processes, also referred to as Rayleigh scattering, where
the atom remains in the same state after the scattering event and inelastic processes, also referred to as
Raman scattering, where the atom changes its internal state.

The calculated scattering rates, in turn, can be used to numerically simulate the temporal evolution
of a trapped ensemble of atoms, which is initially prepared in |T). Indeed, the solid red line depicted
in figure 2.20 is obtained by integrating the population of all |FF = 3) hyperfine levels for each time
step from such a numerical simulation. The agreement between the simulation and the measurement
is remarkable, especially since all parameters are either fundamental or directly defined by the optical
lattice. Furthermore, while the beginning of the population decay can be approximated by an exponential
curve, it converges much slower to the equilibrium population. This is related to the fact that cesium is
not a two-level system, and instead more back and forth scattering occurs between all hyperfine level.
The numerical simulation additionally reveals that if the optical lattice polarization is perpendicular to
the quantization axis, all hyperfine level become equally populated. In our specific case an equilibrium is
reached after more than 10s.

While the current state of the experimental apparatus can only probe whether an atom is in |F = 3)
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Figure 2.22: (a) Ground state hyperfine energy levels of cesium including the D; and D, transition. The arrows
indicate all possible two-photon scattering transitions for an atom in || ) arising by off-resonantly scattering a photon
with the state-dependent optical lattice. (b) Individual scattering rates, obtained from the Kramers-Heisenberg
formula (see appx. sec. B.4). (¢) The blue line represents the temporal evolution of a qubit initially prepared in || ),
the red line shows the contribution in |T), and the red dashed line the contribution in |F = 4, mp = —4).

or |[F = 4), we can now capitalize on the scattering rates to study the temporal evolution of |T) and ||).
This evolution is shown for |T) in figure 2.21(c) and for ||) in figure 2.21(b), respectively. In both cases,
scattering events pump atoms initially from one to the other qubit state and eventually diffuse them
over all attainable levels. This effect is indicated in both figures by the dashed red line which shows
the population in the outermost hyperfine sublevel |F = 4, mp = —4). The lifetime of our qubit states —
defined by the time at which 1 % of an initial state is decayed — amounts to 2.4 ms for |T) and 1.7 ms
for |]), respectively. This lifetime is two orders of magnitude longer than our average qubit operation
(microwave pulses circa 10 us, state-dependent lattice shifts circa 20 us), and hence can be neglected
for most of the experiments reported in this thesis. However, these results actually put a hard boundary
on the long term perspective of experiments based on state-dependent transport of cesium. While it is
possible to enhance the fidelity of our qubit operations by reducing the decoherence (as we will see in the
following), off-resonant scattering events cannot be prevented unless we change the lattice wavelength,
which prevents state-dependent transport, or reduce the dipole potential. The latter is also unfavorable,
since it only scales linearly with the intensity of the optical lattice. This brings us back to the discussion
at the end of section 2.1.3: The level structure of group III atoms may provide an answer to this dilemma,
since they offer the capability to utilize state-dependent transport also for arbitrarily large detunings of
the optical lattice. While considerable challenges have to tackled to before such experiments can be
realized, this approach is highly promising to realize a one-million-operation quantum cellular automaton
with neutral atoms.

2.4.2 The Coherence Relaxation Time T,

The so-called “Tao of Quantum Computing” [45] is the inherent conflict which all modern quantum
optics experiments need to face: we desire a qubit system which couples strongly to coherent external
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drives, while at the same time we aspire it to be only weakly coupled to the environment, such that
coherences are preserved for long times. Often, the choice of the former also defines the latter. For
instance, experiments with ions benefit from the fact that the ions couple strongly to each other through
coulomb interaction, however, this interaction cannot be turned off, and hence noisy electric fields from
the environment are the prime source of decoherence [204]. Neutral atoms, on the contrary, do not per
se have a long range interaction. Instead, one can either engineer long range interaction by means of
the Rydberg blockade [205, 206], or use short range interactions via cold collisions in combination
with Feshbach resonances [207]. We will discuss our first results in the direction of controlled cold
collisions between neutral atoms in section 5.1, however, at the moment we will neglect their impact on
the decoherence of the qubit.

Our experimental apparatus is tailored to perform experiments based on state-dependent transport.
This choice enables a broad spectrum of experiments, however, it also comes at the price of opening
up opportunities for the environment to interact with our qubits. In the preceding section we already
discussed that both, elastic and inelastic scattering rates, are higher than those of other experiments
working with far detuned optical lattices [208]. While inelastic scattering events lead to a population
decay, elastic ones induce decoherence since the probability amplitudes differ for the two qubit states.
Furthermore, we discussed in section 2.3 that the state-dependent transport requires us to work with
magnetic sensitive hyperfine sublevels, and hence our qubit system is sensitive to magnetic field noise
from the environment. A comprehensive list of the physical origin of decoherence for experiments with
neutral atoms as well as a quantitative estimate can be found in Alberti et al. [189]. In essence, all
decoherence sources lead to temporal or spatial varying qubit transition frequencies, which in turn lead
to a dephasing. The most dominant source in our experimental apparatus arises from differential light
shifts. We discussed in section 2.1.2 that the energy of molasses cooled atoms, trapped in an optical
lattice, follow a Boltzmann distribution. Hence, they occupy different vibrational levels, which means
that they experience different values of the light intensity (see also eq. (2.2)). We typically distinguish
two types of light shifts: scalar and vectorial. The former is caused directly by the hyperfine frequency
splitting Agr [182], whereas the latter is caused by imperfections of the light polarization [209]. We will
discuss in the subsequent section how one can in principle fully negate these effects by cooling the atoms
into their vibrational ground state.

Ramsey spectroscopy originates from NMR experiments [210] and has since become the default choice
in cold atom experiments to experimentally measure the amount of decoherence [211]. While there
exist a variety of different approaches how to measure a Ramsey fringe [212, 213], in our experimental
apparatus we make use of the fact that we can scan the phase of the microwave pulse, and hence the
rotation axis of the Bloch vector (see sec. 2.3.2). The experimental procedure follows closely the one
employed to measure microwave spectra (see sec. 2.3.3). After preparing the ensemble of atoms in
[T), a first microwave square 71/2-pulse creates an equal superposition of |T) and ||). The atoms then
remain in this superposition state for a defined duration Az before a second 7r/2-pulse is applied. Finally,
using the push-out technique, all qubits are projected onto either |T) or ||) and the former is removed
from the optical lattice. The phase of the microwave allows us now to scan the Ramsey fringe: If we
are perfectly resonant and neglecting decoherence we expect that that the second 7/2-pulse in the case
of pmw = O transfers the equal superposition state into || ), whereas ¢vw = 7 transfers all atoms back
into |T). Figure 2.23(a) shows the result of such a Ramsey fringe measurement for Ar = 50 us, which
results in a contrast of (95 + 1) %. Furthermore, the phase of the fringe is shifted in comparison to our
discussion above. This reveals that the microwave pulse frequency was not exactly on resonance, and
hence induced a precession along the equator off the Bloch sphere.

To measure the coherence relaxation time 7, — defined as the time At at which the Ramsey fringe
contrast is reduced to 50 % — we repeat the same procedure for increasing times A¢. The measurement
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Figure 2.23: (a) Ramsey fringe measurement for a Ramsey time of 50 us between the two m/2—pulses. (b)
Coherence time measurement obtained by performing several Ramsey fringe measurements with increasing Ramsey
times. The red line represents a fit of the model introduced in Kuhr et al. [212], yielding T, = (240 + 20) us. (¢)
Similar coherence time measurement with an additional spin echo pulse in between the two /2—pulses, yielding
T§Ch° = (530 +40)ps.

results are displayed in figure 2.23(b) together with fit of the model introduced in Kuhr et al. [212]. The
fit allows us to extract a coherence time of 7, = (240 + 20) us, which is in good agreement with the
values reported in Karski [53]. Hence, we can infer that our novel polarization-synthesized optical lattice
(see chap. 3) does not introduce significantly more decoherence than the previous setup.

It is, furthermore, possible to experimentally distinguish between homogeneous (temporal varying) and
inhomogeneous (spatially varying) dephasing decoherence mechanisms using spin echo techniques [210].
If we apply an additional m-pulse after A¢z/2 we can refocus the effect of inhomogeneous dephasing,
and hence regain contrast in a Ramsey fringe measurement. Figure 2.23(c) shows the result of such a
measurement. As expected, we observe a longer coherence time, which amounts to T§°h° = (530 +40) ys.

2.5 Three-Dimensional Ground State Cooling in a Blue-Detuned
Hollow Beam Dipole Trap

We discussed in the preceding sections that it is desirable to cool the atoms into the vibrational ground state
of the optical lattice to enhance their coherence time. Furthermore, the cooling is an indispensable pre-
requirement for experiments with indistinguishable particles, such as the Hong-Ou-Mandel interference
(see chap. 5). In order to cool atoms into — or close to — their vibrational ground state, the state of the
art approach consists of either forming a BEC which subsequently undergoes a phase transition into a
Mott insulator state [43], or through resolved vibrational sideband cooling. While the former can achieve
a nearly unity filled optical lattice where each atom occupies the three dimensional (3D) ground state
with a probability of > 99 % [40, 61], realizing a Mott insulator state requires substantial experimental
effort [214]. The latter, on the contrary, is particular appealing in situations where one wants to cool
small ensembles of atoms. It was demonstrated that sideband cooling — for single ions in Paul traps
— can achieve 3D ground state occupations of up to 99.9 % [215]. Furthermore, sideband cooling can
be utilized to re-cool atoms which may have been heated during an experimental sequence — since it
preserves the atoms’ positions — whereas recreating a Mott insulator state will always lead to a unity

45



Chapter 2 Experimental Techniques

filled optical lattice, hence, erasing information stored in the atoms’ positions.

All resolved sideband cooling techniques use the recoil of optical photons to dissipate the atom’s
vibrational energy. In the following we will discuss both Raman and microwave sideband cooling as
well as how we employ both to achieve an average 3D vibrational ground state occupation of up to 80 %.
Both techniques consist of a coherent sideband transition — which lowers the vibrational state — followed
by the incoherent scattering of a photon. Hence, it is an inevitable prerequisite that the recoil energy of a
scattered photon (fiwrecoil) is much smaller than the energy spacing of the optical potential (% vyap), such
that the atoms’ vibrational state is preserved in a scattering process [216]. This condition is commonly
expressed in terms of the Lamb-Dicke parameter n [204], given by

2 WRecoil

=— < 1. 2.43
27t X VTrap < ( )

n

Using the longitudinal and transverse trapping frequencies given in equation (2.5) and (2.6), respectively,
we obtain {ni, 77%} = {0.02, 2.00} for our one dimensional optical lattice. Hence, the transverse confine-
ment is not sufficient to achieve ground state cooling, in fact the confinement is so weak that we would
actively heat and not cool the atoms. Increasing the trapping frequencies by simply using more laser
intensity is not an option, since the transverse trapping frequency scales only with the square root of the
optical power (see eq. (2.6)), whereas the scattering rate due to lattice photons has a linear scaling (see
eq. (2.6)). Therefore, we require another approach to increase the atoms’ confinement. A blue-detuned
hollow laser beam superimposed with the state-dependent optical lattice embodies an elegant solution:
Since the atoms are repelled from the light we expect only a marginal difference in the total scattering
rate even for high laser intensities of the hollow beam (see sec. 2.5.1). Furthermore, a coinciding hollow
beam does not alter the dimensionality of our optical lattice: while a plausible alternative to the hollow
beam is a three dimensional optical lattice (see ref. [149]), such a 3D optical lattice would make the 1D
experiments presented in this thesis rather time consuming, since atoms would only be rarely trapped in
the same line.

2.5.1 The Blue-Detuned Hollow Beam Dipole Trap

Since their first application in 1997 [217] blue-detuned hollow beam dipole traps have been employed in a
variety of cold atom experiments [218-225]. While most of these never exceeded proof of principle atom
trapping experiments, two realizations stand out from the others: Ozeri et al. [218, 226] characterized the
population relaxation time 7' for various detunings and Li et al. [224] proved for the first time coherent
qubit manipulations by performing Ramsey fringe measurements to determine the coherence relaxation
time 7,. In the following we will discuss the generation of a hollow beam and its integration in our
experimental apparatus. Furthermore, we will study the impact of the combined optical potential — the
polarization-synthesized optical lattice (see chap. 3) and the blue-detuned hollow dipole potential — on
the qubit properties.

Hollow Beam Generation: There exist several different approaches to generate a hollow laser beam,
including cylindrical lens mode converters [227, 228], axicon lens mode converters [219, 229], computer-
generated holograms [230, 231], diffractive optics [232], and spiral phase plates (SPP) [233, 234]. in
fact, all these techniques have been employed to trap neutral atoms. Since we aspire a strong transverse
confinement it is beneficial to adjust the dipole trap’s wavelength as close as possible to the atomic
resonance. This, however, makes our experiment sensitive to spurious light, since off-resonant scattering
events would limit the lifetime of our qubit states substantially (see sec. 2.4.1). Hence, we require a
hollow laser beam with a low darkness factor — defined as the ratio between the light intensity at the
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center and the intensity at the first surrounding ring [218, 226]. In fact, as we will see in the following,
even for a wavelength of Ayg = 851 nm — only 1 nm detuned from the cesium D, resonance — we still
require about 1 W of optical power to attain a Lamb-Dicke parameter of > < 0.1 — corresponding
to vr = 20kHz. A hollow beam with these parameters and darkness factor of 1/100 would lead to a
scattering rate of 250 Hz, which is more than one order of magnitude higher than the scattering rate of
the optical lattice. Furthermore, 1 W of optical power with Agg = 851 nm at the position of the atoms is
close to the limit which one can obtain with commercial laser systems. Hence, we desire low optical
losses as the Gaussian beam of the laser system is converted to the hollow beam.

Mode conversion of a Gaussian laser beam using cylindrical lenses is fundamentally impossible,
instead it requires a beam with a transverse Hermite-Gaussian mode of order (1, 0). This mode can be
obtained by modifying the cavity of the laser source, which however, substantially reduces the available
optical power [235]. Mode conversion through an axicon lens in turn can be achieved directly by a
Gaussian laser beam, however, the darkness factor is limited to about 1/100 due to imperfections of
axicon lenses [219]. Despite significant technological progress in the recent years, the darkness factor of
hollow beams created by computer-generated holograms cannot reach the level of those generated by
spiral phase plates [222]. Furthermore, the conversion relies on diffraction, which limits the efficiency at
best to circa 80 % [236]. While diffractive optics outperform computer-generated holograms in terms
of the efficiency — 93 % efficiency has been reported [232] — they also lack in terms of darkness factor —
1/33 is the best reported value [232]. On the contrary, spiral phase plates meet both requirements: Phase
plates convert > 99 % of a Gaussian into a hollow beam with darkness factors < 1/1000 by imprinting
an azimuthally dependent phase delay on a plane wavefront [237]. Since the phase is undefined on the
optical axis the intensity must be zero in the center [231]. The spiral phase delay is created by passing
through an optical element the thickness of which increases around the laser beams propagation axis (see
SPP illustration in fig. 2.24). While the manufacturing of optical SPPs via electron beam lithography
is still a subject of ongoing research [238], we employ a commercially available SPP??> which consists
of a glass substrate coated with a polymer. The spiral structure is imprinted in the polymer through a
lithographic technique with a 27 phase step optimized for a wavelength of 849.9 nm. The discrepancy
between the SPP’s design wavelength and the employed laser’s wavelength of Agg = 851 nm causes a
0.1 % reduction of the topological charge a, defined by:

—1Dh

a= (nspp — Dh , (2.44)
A

where ngpp is the refraction index and 4 the step height of the SPP. A dedicated Master project [239]

verified that the darkness factor of the hollow beam is not altered by changes in the topological charge.

Furthermore, it was shown that the overall beam profile starts to deform, when the topological charge

deviates by more than 10 % from 1, while it remains virtually unchanged for changes around 0.1 %.

Following the path outlined in section 2.1.1 we can estimate the atomic oscillation frequencies of the
hollow dipole potential by a harmonic approximation of the intensity distribution. This requires us to
estimate the size of the hollow beam at the focal position inside the vacuum chamber. Unlike a Gaussian
beam, the SPP generated hollow beam is no longer an eigensolution of the paraxial wave equation [240].
Therefore, in order to calculate the propagation through the focussing telescope, we cannot employ the
standard ABCD formalism based on the paraxial Fresnel integral [147]. Instead, we need to use a similar
ray propagation formalism for hollow beams, which is based on the Collins integral [240]. After some

22 RPC Photonics: VPP-1a
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Figure 2.24: Optical setup employed to combine our one dimensional state-dependent optical lattice with the
blue-detuned hollow beam dipole trap: the laser beam is generated by an additional Ti:sapphire laser source, the
intensity of which is controlled by an intensity lock steering an AOM. The transverse Gaussian beam is transformed
into a hollow beam by passing through a spiral phase plate (SPP) and is thereafter overlapped with the optical
lattice using a dichroic mirror (DM). The polarization of both overlapped beams is cleaned by passing through an
additional Glan-laser polarizer.

calculus we obtain the following expression for the transverse trapping frequencies [239]:

VT (2.45)

where wy is the waist of the initial Gaussian beam, M is the magnification, and f the focal length, both
determined by the focussing telescope. Using the lens parameters of the employed optics [71], we
theoretically expect trapping frequencies on the order of vy = 20 kHz, for a detuning of 1 nm, 1 W optical
power, and an initial Gaussian waist of 0.8 mm. The strong dependency on the initial waist wy — in
principle — allows us to realize trapping frequencies on the same order as the longitudinal ones of the
optical lattice (circa 100 kHz). However, the already large lens diameter of the employed focussing
telescope prevents us from further enlarging the initial beam size.

Integrating the Hollow Beam Dipole Trap: The integration of the blue-detuned hollow beam dipole
trap into the existing experimental apparatus is illustrated in figure 2.24: A second Ti-sapphire laser
system”? produces a laser beam with Agg = 851 nm and delivers up to 4 W optical power. This beam
passes through an acousto-optic modulator, which is used to stabilize the optical power by means of an
intensity feedback loop similar to the one described in section 2.1.1. A subsequent optical fiber — not
shown — acts as a transverse mode filter to create a Gaussian beam, which is then converted into a hollow
beam by passing through the SPP. Using a custom made dichroic mirror’* we superimpose the hollow
beam with the state-dependent optical lattice. The orientation of the hollow beam’s linear polarization is
chosen such that the dichroic mirror reflects around 98 % of the beam, whereas only 80 % of the 866 nm
optical lattice laser beam is transmitted. Since the dichroic mirror deteriorates the purity of the linear
polarization both beams pass through a Glan-laser polarizer before entering the vacuum chamber.
While small changes in the topological charge leave the intensity profile of the hollow beam virtually
unaffected, it is important to align the impinging Gaussian beam precisely to the center of the SPP

23 Coherent MBR 110 pumped by Coherent Verdi G18
24 Laser Component: 850 nm: Rs > 97 % Rp > 65 % for 45° AOI; 866 nm: Ts > 60 % Tp > 80 % for 45° AOI
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Figure 2.25: (a) Beam profile measurement of the hollow laser beam recorded circa 500 mm behind the spiral phase
plate. (b) Corresponding azimuthally integrated and normalized intensity distribution. For illustration purpose the
data is mirrored at the vertically dashed line.

(see Mawardi et al. [239]). For that purpose we temporarily position a CCD beam profiling camera”

behind the dichroic mirror — about 0.5 m of free propagation — which allows us to monitor the intensity
distribution of the hollow beam while aligning the SPP mounted on a precision five-axis translation
stage”®. A typical intensity distribution obtained after alignment is shown in figure 2.25(a) and attests to
the desired intensity minima at the center of the beam. In addition, we extract an estimate of the darkness
factor from the azimuthally integrated intensity distribution (see fig. 2.25(b)), which amounts to < 1/450,
limited only by the dynamic range of the beam profiling camera.

The spatial overlap of the optical lattice with the hollow dipole trap is a delicate matter: already a
relative angle of 0.001° between the lattice and hollow laser beam translates into a displacement between
both optical potentials of 1 wm at the focal position inside the vacuum chamber. Consequently, a non
vanishing transverse displacement between these two at the trapping region leads to a combined optical
potential which attracts atoms neither to the maximum of the optical lattice nor to the minimum of the
hollow dipole trap. While minor relative transverse displacements are expected to noticeably reduce the
qubits coherence time through scalar differential light shifts (see sec. 2.4.2), larger deviations significantly
increase the atoms scattering rate. These scattering events reduce the qubit lifetime (see sec. 2.4) and
can in extreme cases even impact the storage time of trapped atoms. Spatial mode matching of two laser
beams is typically achieved by coupling both beams through a single mode optical fiber. This technique,
however, cannot be directly employed in this case, since the transverse mode of the hollow beam is
orthogonal to the transverse mode which is guided by optical fibers. Instead, we first ensure a spatial
overlap of both by iteratively minimizing the relative displacement between both beams in front of and
behind the vacuum chamber using the CCD beam profiling camera mentioned above. Once no visual
difference of the two beams central position can be detected, we can further optimize the overlap by
adjusting the transmission through the optical fiber of the counter-propagating lattice beam to virtually
zero. Here, we employ piezoelectric kinematic mirror mounts®’, which allow us to adjust the tilt angles

25 Ophir: Spiricon LW230
26 Newport: 9082-M wide five-axis aligner
27 Radiant Dyes: MDI-H-1" Piezo-Drive
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Figure 2.26: Transverse compression of atoms by hollow trap. (a) Without extra transverse confinement, thermal
atoms are elongated in the transverse direction (y-axis in the figure). (b) By adding a doughnut-shaped blue-detuned
laser beam, the atoms’ motion is transversally squeezed. The radius of the round shape is limited by the 1.9 um
optical resolution of the microscope objective lens (NA=0.23). This figure is adapted from Robens et al. [4].

of the hollow beam with a precision of 0.0005°.

We can also make use of the atoms themselves to quantitatively determine final overlap of both optical
potentials by recording the fluorescence of atoms which are trapped in the optical lattice, while gradually
increasing the intensity of the hollow beam. Figure 2.26(a) exemplarily shows the fluorescence image
of four atoms solely trapped by the optical lattice. The intensity distributions of these atoms exhibit
a characteristic elliptical shape which arises from the vaguely focussed Gaussian beam (see sec. 2.2).
Increasing the hollow dipole trap’s intensity, however, decreases the ellipticity since the additional
confinement restricts the atoms transverse motion. For the maximum trap depth we expect the extent of
the transverse thermal motion to be on the order of 500 nm, which is well below our optical resolution of
ra = 1.9 um. Hence, the intensity distribution of the atoms becomes round when recording a fluorescence
image, which is exemplarily shown in figure 2.26(b) for the same group of four atoms. Therefore, if both
optical potentials are well overlapped, the vertical position of the atoms remains unchanged with and
without the hollow beam dipole trap.

Furthermore, using the blue-detuned hollow dipole trap during fluorescence imaging enables us to
shorten the image acquisition time while maintaining the same signal to noise ratio. This is of general
interest since acquisition time embodies the bottleneck of all experimental sequences requiring single site
detection. The additional confinement of the hollow dipole trap enables a reduction of the acquisition time,
since it prevents atoms from hopping along the lattice during imaging even for larger saturation parameters
(see sec. 2.2). However, to acquire fluorescence images — such as the one shown in figure 2.26(b) — we
need to manually tune the wavelength of the Ti:sapphire laser system a few nanometer further away from
the cesium D, resonance (Agg ~ 848 nm). Otherwise, stray light arising from reflections of the hollow
laser beam is no longer blocked by the interference filter in front of the EMCCD camera. Nevertheless, it
is experimentally conceivable to automatize the wavelength scanning for prospective experiments.

Population and Coherence Relaxation Times: In the preceding sections we discussed how to
optically verify the purity of the blue-detuned hollow laser beam and concluded that a SPP generated
hollow beam should nicely integrate in the existing experimental apparatus. Therefore, it is time that
we devote our attention to the properties of the qubits themselves, namely the storage time as well as
the population and coherence relaxation times. The required experimental sequences were introduced in

50



2.5 Three-Dimensional Ground State Cooling in a Blue-Detuned Hollow Beam Dipole Trap

a) 05+ b) 1 ﬁ
= 0.8 \‘\
o« |
I A L2
o3 Gosl %
< £ \
c S 3
g S04 t
s + .
] .
< 0.2 '.* + {) %

04 06 08 1 12 0 200 400 600 800
Hold Time (s) Ramsey Time (us)

Figure 2.27: (a) Population relaxation measurement of atoms which are initialized in |T) and trapped in the
combined optical potential arising from the optical lattice and the hollow beam. The dashed black line represents a
fit using the simple model given in equation (2.42). The dashed red line is obtained by numerically simulating the
temporal evolution of the |T) state using calculated scattering rates and a hollow beam darkness factor of 1/1 000,
likewise the solid red line for a hollow beam darkness factor of 1/10000. (b) Coherence time measurement
obtained by performing several Ramsey fringe measurements with increasing Ramsey times. The green dots
represent a measurement of atoms which are only molasses cooled, whereas the blue dots represent a measurement
where atoms are partially cooled into their 3D ground state, using the techniques discussed in section 2.5.2. The
red lines represent fits of the model introduced in Kuhr et al. [212], yielding 7> = (12 + 4) us for the molasses
cooled atoms and 7, = (115 =+ 15) us for the partially 3D cooled ones.

section 2.4 and remain mostly the same as before, with the addition that the hollow beam dipole potential
is adiabatically raised once the initial fluorescence image is recorded and likewise adiabatically lowered
before the state detection.

During the raising of the hollow beam potential, the atoms are stored in the deep lattice potential
(Uo/kp = 370 uK) and continuously cooled employing the optical molasses beams (see sec. 2.1.1). While
at first sight it might seem irrelevant whether we increase the hollow beam dipole potential when the
optical lattice is low or deep, it makes a significant difference for the subsequent ground state cooling:
Without the additional transverse confinement the mean transverse vibrational occupation in the optical
lattice amounts to 7it = 200. Reducing on average 200 motional quanta to cool an atom into its vibrational
ground state is a rather tedious starting point. In comparison, along the longitudinal direction of the
optical lattice the mean longitudinal vibrational occupation amounts to ;. < 2. While molasses cooling
in the blue-detuned hollow potential does not reduce the atomic temperature it nevertheless reduces the
mean transversal vibrational occupation to iiT ~ 10. Hence, the strong transversal confinement enables
us to remove 95 % of the transverse vibrational excitations, without any additional cooling technique.

The hollow beam must be lowered before the state detection since the push-out technique makes use
of radiation pressure forces to push the atoms out of the optical lattice in the transverse direction (see
sec. 2.3.1). Hence, a deeper transverse potential would lower the detection efficiency. Prior to the qubit
population and coherence relaxation time measurements, we verified that the storage time of atoms in
the combined optical potential for a hollow beam detuning of 1 nm and 1 W of optical power remains
nearly unaffected (50 % loss storage time ~ 5s). In fact, if we do not raise the hollow beam intensity
adiabatically or if we choose detunings below 1 nm, the scattering rate quickly reduces the storage time
to values below 1s.

Figure 2.27(a) shows population decay of atoms in the |T) state which are trapped in the combined
optical potential as a function of the hold time in between state initialization and detection. The overall
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shape resembles the one of the measurements where atoms were trapped solely in the optical lattice (see
fig. 2.20). In fact, if we use the simplified exponential model (see eq. (2.42)) to extract the population
relaxation time 7] — represented by the dashed black curve in fig. 2.27(a) — we obtain 7] = (86 + 12) ms,
which is in good agreement with the value obtained without the additional blue-detuned hollow potential.
Furthermore, as outlined above, we can numerically calculate the scattering rates — using the Kramers-
Heisenberg formula — for each of the two potentials individually and simulate the temporal evolution of
an atomic ensemble prepared in |T). Here we make the assumption that the hollow beam is not perfectly
dark at its center, which is modeled by a homogeneous background (flat-top beam profile, see fig. B.1(c)
in appx. sec. B.1). It is noteworthy that possible transversal displacement of the two optical potentials
cannot reduce the total scattering rate: while a displacement pushes atoms away from the intensity
maximum of the optical lattice, and hence reduces the lattice induced scattering rate, it simultaneously
drags atoms away from the hollow beam minima, which consequently increases the total scattering rate.
The dashed red line in fig. 2.27(a) represents a numerical simulation with a hollow beam darkness factor
of 1/1 000 (corresponding to a total scattering rate of 1/7 = 15 Hz), whereas the solid red line is obtained
assuming a darkness factor of 1/10 000 (corresponding to a total scattering rate of 1/7 = 1.5 Hz). These
simulations allow us to conclude that the hollow laser beams darkness factor is better than 1/1 000, which
for itself is a remarkable result and attests the quality at which SPPs can create hollow laser beams.
Furthermore, our findings are in good agreement with the 7'; time values reported in Ozeri et al. [218,
226], which obtained a 1/e population relaxation time of 7| ~ 150 ms for a hollow beam with a darkness
factor of 1/750.

While the population relaxation time shows great promise for a general application of hollow beam
dipole traps in cold atom experiments, the coherence time tells a different story. The green dots shown in
figure 2.27(b) represent the remaining fringe contrast obtained from Ramsey fringe measurements for
increasing delay times between the two m/2 pulses (see sec. 2.4.2). Employing the same fit model as
before [212] allows us to extract a coherence relaxation time of 7, = (12 + 4) us, which is more than
one order of magnitude reduced in comparison to the coherence time obtained without the hollow beam
dipole potential. In fact, this coherence time is so short that it noticeably reduces the transfer efficiencies
of the microwave addressing pulses to circa 85 % for the 10 us square m-pulse and to circa 50 % for the
narrow Gaussian m-pulse, respectively (see tab. 2.5 for comparison). While a full quantitive analysis
of this behavior is subject of prospective studies, we can already conclude that the reduction of the
coherence time is a result of differential light shifts, since the scattering rate has not increased noticeably.
However, decoherence arising from differential light shifts is expected to vanish once atoms are cooled
into their 3D vibrational ground state. Therefore, we repeated the coherence time measurement with
atoms whose average transverse vibrational occupation was lowered to 7t = 1 using the sideband cooling
techniques introduced in the following section. The result of this measurement is represented by the
blue dots shown in figure 2.27(b) and the corresponding coherence time amounts to 75 = (115 + 15) us.
While the coherence time is still shorter compared to the situation where atoms are solely trapped by the
optical lattice, it is sufficient to bring the microwave transfer efficiencies well above 90 %. Furthermore,
we will see in the following that we can reach an average transverse vibrational occupation of 7t < 0.25,
which should further increase the qubits coherence time. We also repeated the spin echo measurement
for the sideband cooled ensemble which is trapped in the combined optical potential (data not shown)
yielding a coherence time of T§°h° = (340 % 50) us. Unfortunately a direct comparison with the values
reported in Li et al. [224] is not possible. While they also used cesium atoms, in their case, the hollow
beam was 320 nm blue detuned from the cesium D, resonance and the qubit encoded in the clock states
(IF =4,mp = 0) and |F = 3,mp = 0)). The far off resonance dipole trap reduces the decoherence due
to the hyperfine splitting almost entirely (scalar differential light shift, see also sec. 2.4.2), whereas the
clock states are only sensitive to magnetic field noise due to the quadratic Zeeman shift. Using these
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parameters Li et al. [224] obtained a 1/e coherence time of 7, = 43 ms, which is comparable to other
experiments using cesium clock states.

2.5.2 Vibrational Ground State Cooling

We introduced in section 2.5 that both, Raman and microwave, sideband cooling techniques require a
coherent sideband transition, which lowers the vibrational state by one quantum, [T, n) < ||, n—1).
Furthermore, we introduced in section 2.5 the Lamb-Dicke parameter n and identified the condition
1> < 1 as one of the prerequisites of resolved-sideband cooling. Hence, it comes at no surprise that
sideband cooling using a coherent two-photon transition was first realized for single ions in Paul traps
where trapping frequencies of up to 10 MHz can be engineered [241]. Nevertheless, only a few years
later different groups achieved almost simultaneously sideband cooling of neutral atoms trapped in an
optical lattice [242-244], which has since become a standard tool in cold atom experiments [245-249].
Coherent two-photon transitions are an alternative technique to drive the qubit transition. However, in
contrast to microwave radiation, two-photon transitions can directly change the vibrational state of an
atom due to the larger momentum of optical photons, as we will see in the following. To experimentally
realize coherent two-photon Raman transitions we illuminate the atoms with two off-resonant laser beams
(one 7-, the other o*-polarized), the relative frequency difference of which corresponds to precisely the
qubit transition frequency of 9.2 GHz. Consequently, the two qubit states are coupled by these laser
beams through a virtual excited level, which is illustrated in figure 2.28(a). If the laser frequencies are
detuned far enough from the atomic resonance — typically on the order of 100 GHz — the effective qubit
Raman-Rabi frequency amounts to:
_ Qp Q+
S O2AR

where Ag is laser detuning, and Q-+ the single-photon Rabi frequencies of the resonant optical transition,
induced by the /0" polarized laser beam. Despite the fact that we are driving the system through a
third, intermediate state, we can reduce the Hilbert space to an effective two-level system the dynamics
of which is again described by the optical Bloch equations introduced in section 2.3.2.

Or (2.46)

In addition to coupling the two qubit states, Raman two-photon transitions give us a tool to couple two
specific vibrational levels by adjusting the relative laser frequency difference Av. If we set Ay exactly to
the qubit transition frequency we drive the so-called carrier transition |T, n) < ||, n), which — similar to
the coupling via microwave radiation as discussed in section 2.3.2 — preserves the vibrational state of our
atoms. On the contrary, if we detune Av from the qubit transition resonance by the longitudinal trapping
frequency (+v1,), or by the transverse trapping frequency (+vr) we can couple two adjacent vibrational
levels |1, np/T) < ||, nL/T = 1), which is commonly referred to as a sideband transition.

At this point it is reasonable to ask whether Raman lasers allow us to couple vibrational levels in
any spatial direction of a three dimensional trap — specifically, in our case, along the longitudinal and
two transverse directions of the optical lattice. The answer is: in principle yes, but it depends on the
orientation of the momentum which is exchanged in the two-photon process. We can gain more insight by
recalling that the eigenfunctions of the quantum harmonic oscillator are orthogonal and consequently the
overlap integral of two different vibrational level (n and n”) amounts to zero: (T, n| |, n’) = 0, for n # n’.
Therefore, to couple adjacent vibrational levels we seek an operator which breaks this orthogonality such
that the overlap integral differs from zero. In the case of the two-photon transition induced by the Raman
lasers this operator is given by the momentum shift operator:

Ti]z{lman - eifA/z , (247)
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Figure 2.28: Side by side comparison of the Raman and microwave sideband cooling cycle: (a) A two-photon
Raman transition (1) lowers the vibrational state by one quantum, [T, n) — ||, n — 1). Subsequently the atom
is transferred back into the |T) state through an on-resonant scattering process (2). (b) Since the momentum
transferred by a single microwave photon is not sufficient to enable sideband transitions, we instead utilize spatially
shifted potentials (see sec. 2.5.2) to drive a coherent sideband transition, which lowers the vibrational state by one
quantum (1). The consecutive on-resonant scattering process (2) likewise transfers the atom back into the |T) state.

where Ak is the wave vector difference between the two optical photons. Hence, choosing the orientation
of Ak enables us to drive sideband transitions in any desired spatial direction of the optical potential.
For example, if we choose two co-propagating Raman-laser beams which are overlapped with the
optical lattice, Ak is also oriented along the lattice, and hence the two-photon transition can only couple
longitudinal vibrational levels. For our application we align one laser collinear with and the other
perpendicular to the optical lattice (see also fig. 2.30). This way, as we will see in the following, Ak has a
projection onto all spatial directions, and hence it is possible to achieve 3D ground state cooling with a
single pair of Raman lasers.

The connection between coupling vibrational levels and the momentum shift operator allows us also to
understand why we don’t see longitudinal or transversal sideband transitions in our microwave spectra
(see sec. 2.3.3), despite the fact that the spectral resolution of these pulses is high enough to resolve
vibrational transitions. The momentum transferred from a single microwave photon is so small that
the corresponding momentum shift operator effectively does not break the orthogonality of the wave
functions, and hence:

(N, TNV, 7'y ~0. (2.48)

However, from an experimental point of view it would be highly desirable to couple vibrational levels
with microwave radiation, simply because microwave generators have proven to be extremely reliable,
whereas even state of the art Raman lasers require almost daily maintenance. From a mathematical point
of view, the solution is intriguingly simple: instead of using the momentum shift operator 7'xx we can use
the position translation operator T'a, to achieve a non-zero overlap of the wave functions:

I"(Ax) = (1, n| Tag Il 1) (2.49)
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where the coupling strength I,’f between two vibrational levels is commonly referred to as the Franck-
Condon factor, in analogy to molecular physics [250]. Hence, instead of exchanging momentum through
an optical photon, potential energy is exchanged through a spatial translation. To experimentally realize
a position translation operator we need to spatially separate the potential minima of the |T) and |])
state, such that when we change the atoms qubit state from |T) to ||) the atom correspondingly changes
its position, which is illustrated in figure 2.28(b). In general, such a state-dependent displacement is
experimentally not straightforward. In fact, although this concept was theoretically already proposed in
1997 [251], it took more than ten years before it could be realized for single ions in Paul traps using strong
magnetic field gradients [198], or for neutral atoms in optical lattices by our group using state-dependent
transport [245]. Indeed, our state-dependent optical potentials are an ideal tool, allowing us to adjust
the spatial displacement Ax with subnanometer precision, which in turn, gives a precise control of the
coupling strength I,’:,(Ax). A rigorous analysis based on the Lindblad master equation formalism can be
found in Belmechri et al. [252], which concludes that the ideal displacement for ground state cooling
amounts to Ax =~ 17 nm.

By now we have seen that it is possible to coherently couple vibrational levels using either microwave
radiation or a pair of Raman lasers, which allows us to drive a transition between adjacent vibrational
levels of a trapped atom: |T, n) & ||, n—1). However, it is not possible to cool atoms into their
vibrational ground state relying purely on coherent operations, since these operations — by definition —
cannot remove entropy from the system. Hence, we make use of a photon scattering process — for both
Raman and microwave cooling — which closes the cooling cycle by transferring atoms back into the |T)
state, as illustrated in figure 2.28(a) for the Raman cooling scheme and in figure 2.28(b) for the microwave
cooling scheme, respectively. This photon scattering process is induced by illuminating the atoms with o
polarized laser light from the repumping laser, which is resonant with the |F = 3) — |F’ = 4) transition
(see sec. 2.1.1). Each cooling cycle removes one vibrational quantum from the atom until it reaches
the |T, O) state, where it is decoupled from the coherent transition. Thus, in the absence of a competing
heating mechanism, all atoms will eventually accumulate in the ground state, which is the dark state
of the cooling process [204]. However, in our experimental apparatus several heating mechanisms
simultaneously pump atoms out of the dark state, and hence it is impossible for us to cool 100 % of the
atoms in their vibrational ground state, which we will discuss in section 2.5.2.

In the following we will discuss separately the experimental results achieved employing microwave
sideband cooling to cool the vibrational excitations along the longitudinal direction and Raman sideband
cooling to cool the excitations along both transversal directions of cesium atoms which are trapped in the
combined potential of the optical lattice and the blue-detuned hollow dipole potential.

Longitudinal Vibrational Microwave Cooling

Cooling the longitudinal vibrational excitations has been routinely employed in our laboratory since the
first demonstration reported in Forster et al. [245]. To experimentally implement the cooling scheme
depicted in figure 2.28(b), we first shift the o+ polarized lattice 17 nm apart from the o~ polarized
lattice using a 1 ms long adiabatic transport operation (see chap. 3 for more information on the transport).
Then, we concurrently apply microwave radiation, which is resonant with the cooling sideband transition
[T, n) & |l, n—1), and both F- and mg-state pumping light (see sec. 2.3.1). So far we omitted the
mp-state pumping light in the cooling scheme. The light is required to pump atoms back into the cooling
cycle which were transferred into a hyperfine sublevel other than |T) or |]), through off-resonant Raman
scattering processes. The equilibrium vibrational distribution is typically achieved after 20 ms, whereupon
we adiabatically shift the o lattice back, such that both lattices are again perfectly overlapped.

In order to probe the equilibrium vibrational state distribution, we perform sideband spectroscopy.
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Figure 2.29: Microwave sideband spectrum of an ensemble of atoms, which is only molasses cooled (a) and of
an ensemble, which is cooled close to the vibrational 3D ground state (b) by applying multiple iterations of both
microwave and Raman sideband cooling as depicted in figure 2.31. The asymmetry of the cooling and heating
sideband transition heights allows us to infer a longitudinal ground state occupation of n](; = (39 £ 4) % for the
molasses cooled atoms and ng = (95 £ 3) % for the 3D cooled ones.

Table 2.6: Summary of the obtained mean longitudinal vibrational occupations 7" and corresponding ground state
populations ”]6 employing microwave sideband cooling with different cooling sequences.

Cooling technique i n(%

Molasses cooling (1.50 £0.20) (B9 4%
1D microwave sideband cooling [1] (0.01 £0.01) (99 £+ 1)%
3D sideband cooling (0.05 £0.03) (95 £3)%

Sideband spectroscopy is technically equivalent to microwave spectroscopy, which we discussed in
section 2.3.3, with the addition that we shift the two state-dependent lattices apart prior to applying a
microwave m-pulse. The histogram displayed in figure 2.29(a) exemplarily depicts a measured microwave
sideband spectrum of thermal atoms, trapped in our optical lattice, which are cooled using only the
molasses cooling introduced insection 2.1.1. The three visible peaks correspond to the heating sideband
transition |T, n) — ||, n+ 1), the carrier sideband transition |T, n) — ||, n), and cooling sideband
transition |T, n) — ||, n — 1), respectively. This measurement allows us to extract the longitudinal
oscillation frequency of our optical lattice by performing a non-linear least squares fit to the measured
data, the result of which is represented by the red line in figure 2.29(a). The resulting longitudinal
trapping frequency amounts to vi, = (117.2 + 0.4) kHz, which is in good agreement with the theoretical
value of the" = 110kHz obtained from equation (2.5).

The histogram displayed in figure 2.29(b), on the contrary, shows a sideband spectrum, obtained after
applying multiple iterations of both microwave and Raman sideband cooling to cool the atoms into their
3D ground state. The experimental details of this 3D cooling sequence are depicted in figure 2.31 and
introduced in more detail in the following section. While the microwave sideband spectrum shown in
figure 2.29(a) shows only a slight asymmetry in the height of the cooling and heating sideband, the
sideband spectrum obtained after ground state cooling (see fig. 2.29(b)) shows almost no sign of the
cooling sideband. In fact, this is precisely what we expect, since in the case where all atoms were
successfully cooled into the |T, 0) state, there is no transition into the ||) state, which further lowers the
vibrational quantum number. Additionally, the asymmetry of the peak heights allows us to extract the
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fraction of atoms which resides in the vibrational ground state [204]:
Rsp = ——, (2.50)

where hcsp is the height of the cooling sideband and hygp is the height of the heating sideband. Assuming
that the vibrational states are distributed according to a thermal Boltzmann distribution and that we can
neglect effects from the anharmonicity of the optical lattice — which certainly holds true for the lowest
vibrational states — the following expression for the mean vibrational occupation is obtained [204]:
= (2.51)
1 — Rsp
There exist several other techniques how to extract the mean vibrational state occupation [97-102],
however, this method is particularly convenient since it is independent of the pulse duration, the carrier
Rabi frequency, and the Lamb-Dicke parameter [253]. The mean vibrational occupation # in turn allows
us to determine the ground state population, according to:

1
1+7°

ny = (2.52)
Using the non-linear least squares fit allows us to extract the occupations for both the molasses cooled and
the sideband cooled spectrum, which are summarized in table 2.6. It is noteworthy that we achieve mean
longitudinal ground state occupations of up to nIO‘ =99 % [1] if we omit the transverse Raman sideband
cooling, which is also in agreement with the theoretical prediction given in Belmechri et al. [252]. Hence,
for completeness, table 2.6 comprises the values obtained employing exclusively 1D microwave sideband
cooling.

Transverse Vibrational Raman Cooling

Since we cannot induce a state-dependent potential displacement in the direction which is transverse to
the optical lattice, we here employ Raman sideband cooling. Hence, we need to incorporate additional
laser beams into the optical setup. As depicted in figure 2.30, we use a single pair of Raman beams —
one collinear with and the other perpendicular to the optical lattice — to cool both transverse directions
according to the Raman cooling scheme depicted in figure 2.28(b). The collinear beam shares the optical
path with the F- and mp-state pumping beams, ensuring a circular polarization purity of IT > 20 00078,
which hence, induces a o* transition for the atoms. The perpendicular beam impinging from the top is
also circular polarized, however, due to the orientation of the quantization axis, this light induces o*, 7,
and o~ transitions. Nevertheless, only the 7 component leads to the desired two-photon Raman transition,
whereas the other two components have no effect besides slightly increasing the off-resonant scattering
rate. More details on the optical setup can be found in Boventer [104]. We achieve simultaneous cooling
in both transverse directions by exploiting a slight ellipticity of the hollow beam dipole trap, which
ensures vibrational coupling between the two transverse directions, so that the momentum transfer
provided along a single direction by the Raman transition suffices to cool the atomic motion in both
transverse directions (see inset of figure 2.30). Since the ellipticity of the hollow beam is only on the
order of a few percent, likewise the trapping frequencies will differ by about 1 kHz. This frequency
difference is enough to lift the degeneracy of the transverse trapping frequencies, however, it is not large
enough to spectroscopically resolve the two orthogonal directions individually. Instead when performing

28 The purity is defined as the ratio of o /o=~ polarized light, for more details see [180]
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Figure 2.30: Optical setup to incorporate the two phase locked Raman lasers into the experimental apparatus: The
Raman master laser shares the optical path with the F- and mp-state pumping beams and is, hence, overlapped
with the optical lattice and the hollow laser beam using a pickup plate (PP). The Raman slave laser beam impinges
from the top and partially shares the optical path with the z-axis molasses beam. Consequently the beam is circular
polarized. The inset visualizes the momentum transferred onto an atom which undergoes a two-photon Raman
transition. The orientation of the hollow beam ellipticity — exaggeratedly drawn for illustrational purposes — enables
momentum transfer along both vibrational directions.

sideband spectroscopy, we expect to see a combined peak for both transverse sideband transitions, the
FWHM of which increases with the order of the sideband transition [204].

A natural prerequisite for sideband cooling is an accurate knowledge of the trap oscillation frequencies.
If the frequency difference of the Raman lasers is not exactly tuned to the cooling sideband transition,
we not only lower the cooling rate, but also increase the likeliness to induce an off-resonant heating
transition. Hence, following the procedure outlined above, one could attempt to extract the transversal
trapping frequencies by performing sideband spectroscopy on an ensemble of atoms cooled only using
the molasses lasers. However, as shown in figure 2.32(a), if we perform sideband spectroscopy on
purely molasses cooled atoms we observe only a single broad peak independent of the Raman-Rabi
frequency. This does not come as a surprise: we have seen in section 2.5.1, that the additional hollow
beam confinement leads to strong decoherence, which in turn broadens the individual sideband transitions
to a point where no individual transitions can be spectrally distinguished. Figure 2.32(a) shows the
sideband spectrum obtained by applying a 3 ms long Raman pulse. Contrary to microwave sideband
spectroscopy, where we carefully adjusted the pulse such that it suffices the z-pulse condition, the Raman
pulse length is much longer than the coherence time 7>, but still sufficiently shorter than population
relaxation time 7, which creates a statistical mixture of |T) and ||) with equal probability — in the case
where the frequency difference of the Raman lasers is in resonance with the carrier transition. From
an experimental point of view, choosing such a long pulse is advantageous, since it allows to perform
sideband spectroscopy without precisely characterizing the Raman-Rabi frequency in advance.

In order to circumvent the problem, that we cannot resolve the transversal sidebands in an purely
molasses cooled atomic ensemble, we employ unresolved sideband cooling [243] prior to the Raman
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Figure 2.31: Experimental sequence employed to achieve 3D ground state cooling: The red-blue gradient symbolizes
a transport operation which separates/recombines the two optical potentials by 17 nm. The grey shaded areas
correspond to longitudinal microwave sideband cooling, whereas the green ones correspond to transverse Raman
sideband cooling, respectively. The first 20 ms long microwave cooling sequence also initializes all atoms in |T).
The first Raman cooling sequence drives second order transitions to remove two vibrational quanta in one cooling
cycle.

sideband spectroscopy pulse. Unresolved sideband cooling means, that we use the theoretical estimate of
the transversal trapping frequencies obtained from equation (2.45) and sweep the frequency difference of
the Raman lasers a few kilohertz around this estimate for 40 ms. This technique cools atoms close enough
to the ground state, allowing us to extract the experimental transversal trapping frequencies (spectrum
not shown), which in turn can be used for resolved sideband cooling.

Knowing both, the longitudinal and transverse trapping frequencies, we can now cool atoms which are
trapped in the combined potential of the optical lattice and the blue-detuned hollow dipole potential into
their 3D vibrational ground state. A natural first guess would be to sequentially cool the atoms first into
the longitudinal ground state using microwave sideband cooling and then into the transverse ground state
using Raman sideband cooling. However, since we occasionally create an excitation in the uncooled
direction either by off-resonant photon scattering or by heating from the optical lattice (see sec. 2.5.2), we
need to go through several iterations of both cooling techniques, with decreasing durations, as illustrated
in figure 2.31. Furthermore, we estimated in section 2.5.1, that we need to cool on average 10 transverse
excitations, before the atoms reach the ground state. Hence, as depicted in figure 2.31, we first drive
second order cooling transitions which lower the transverse vibrational state by two quanta per cycle,
instead of by only one.

The histogram depicted in figure 2.32(b) shows the transverse spectrum obtained after applying the
3D cooling sequence shown in figure 2.31. In contrast to the sideband spectrum shown in figure 2.32(a),
we now can clearly resolve the peaks of individual sideband transitions. Using a simplified fit model
— consisting of several Gaussian functions — in combination with equation (2.52) and equation (2.51)
allows us to extract the mean transverse vibrational occupation, which amounts to Al = (0.07 £0.04),
and the corresponding transverse ground state population, which amounts to ng = (94 +4)% — for each
of the two transverse directions. Combining this result with the one obtained from longitudinal sideband
spectroscopy, reported in the preceding section, allows us to conclude that we can cool individual
atoms into their 3D vibrational ground state with a success rate ngD of up to 80 % (see also tab. 2.7).
Furthermore, using the simplified fit model also allows us to extract a transverse trapping frequency
yielding vt = (19.9 + 0.4) kHz, which is in good agreement with the theoretical value of v%heo =20kHz
obtained from equation (2.45). It is noteworthy, that the spectrum depicted in figure 2.32(b), represents
our record in terms of 3D ground state cooling for the experimental apparatus at hand. More commonly,
we achieve transverse ground state cooling with a mean vibrational occupation of 77 = 0.25, which
corresponds to a ground state population of ng = 80 %. In the following section we use a simplified
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Figure 2.32: Raman sideband spectrum of an ensemble of atoms, (a) which is only molasses cooled and of
an ensemble, (b) which is cooled close to the vibrational 3D ground state by applying multiple iterations of
both microwave and Raman sideband cooling as depicted in figure 2.31. Without sideband cooling, decoherence
broadens individual transitions to a point where basically no features can be observed. The asymmetry of the cooling
and heating sideband transition heights allows us to infer a transverse ground state occupation of ng =%4 £ %
for the 3D cooled atoms.

Table 2.7: Summary of the obtained mean vibrational occupations 1" and corresponding ground state populations
ng employing microwave sideband cooling along the longitudinal direction and Raman sideband cooling along the
transverse direction, respectively. It is noteworthy, that the values for the Raman sideband cooling represent our
record in terms of 3D ground state cooling for the experimental apparatus at hand. More commonly, we achieve
transverse ground state cooling with a mean vibrational occupation of 7' = 0.25 and correspondingly ng =80 %.

Mean vibrational occupation Ground state population
Longitudinal it = (0.05 +0.03) ng =(95 £3)%
Transverse Al = (0.07 +0.04) =94 +4) %
3D - nP = no(n0)2 =84 4%

model of the cooling and heating processes occurring during the ground state cooling to quantitatively
estimate the maximal attainable mean ground state occupation, as well as the lifetime of atoms which
were successfully cooled into their 3D ground state.

The carrier transition in figure 2.32(b) is spectrally well resolved with a FWHM of (5.8 + 0.6) kHz,
which in itself attests an enhancement of the coherence time. By performing a non-linear least squares fit
of a simulated spectrum — obtained by numerically solving the Bloch equations (see eq. (2.37)-(2.39))
— to the measured carrier transition, we extract an estimate of both the Raman-Rabi frequency and the
coherence time 75, which amount to Qr = (1.0 + 0.4)kHz and 7, = (700 + 400) us. In fact, the ratio
between the cooling Rabi frequency and the trapping frequency is chosen such that we achieve a maximal
cooling rate while simultaneously keeping the rate of off-resonant carrier or even heating sideband
transitions at a minimum, which we will discuss in more detail in the following section. Furthermore,
our Raman-Rabi frequency agrees well with the cooling Rabi frequencies typically chosen by other
experiments, which are about one order of magnitude smaller than the trapping frequencies [245-249].

A cooling Rabi frequency on the order of only a few kilohertz unfortunately increases the sensitivity of
the cooling efficiency to small magnetic field fluctuations. In particular magnetic field fluctuations arising
from the power line frequency (50 Hz) can easily shift the qubit carrier transition frequency by a few
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Figure 2.33: (a) Carrier transition frequency as a function of time. The periodic dependency of the transition
frequency is caused by magnetic field fluctuations arising from the 50 Hz oscillation of the power line. The small
linear drift arises from a long settling time of our magnetic coils, which generate the quantization axis. The
large uncertainty on individual measurements is not intrinsic, but a consequence of choosing few repetitions. (b)
Transverse heating rate measurement of atoms which are cooled close to their vibrational ground state. The mean
transverse occupation is obtained from individual sideband spectra with increasing hold times between cooling and
detection. The red line represents a fit of a simple exponential model to the measured data.

kilohertz, which hence, would significantly lower the cooling rate. In order to measure these fluctuations
we perform spectrally narrow microwave spectroscopy and extract the carrier transition frequency for
increasing hold times, which is summarized in the graph shown in figure 2.33(a). As expected we observe
a signal with a 20 ms periodicity and a peak to peak amplitude of 4kHz>’. This calibration, in turn,
allows us to employ feed forward control by modulating the frequency difference of the Raman lasers
during the cooling process. All experiments presented within this thesis, which rely on sideband cooling,
were obtained using this feed forward control method.

Cooling Limitations and Ground State Lifetime

The experimental results from the preceding sections attest that we can achieve a significant 3D ground
state occupation, however, we are still considerably far away from reaching 100 %. In the following we
will first obtain an estimate of the cooling rate based on a simplified model, which we then extend by
incorporating all relevant sources of heating. Furthermore, some of these heating processes not only
occur during the cooling process. These heating processes, hence, will determine the lifetime of the
ground state, which we can also measure experimentally.

A theoretical prediction of the final vibrational state of an ensemble of atoms which is cooled via
sideband cooling can be obtained following a similar route as presented in [254] where the interaction
Hamiltonian is inserted into the master equation and solved numerically. However, since each cooling
cycle consists of a coherent sideband transition — either Raman or microwave — followed by a repumping
event, which involves spontaneous emission, coherences typically don’t play a significant role. Thus,
the problem can be approximately solved using rate equations [204]. Furthermore, we experimentally
verified, that we achieve a significant ground state occupation. Hence we can even further simplify
the calculation by restricting the rate equations to the lowest two vibrational levels. In the absence of
technical heating mechanism, it can be shown that the minimal mean vibrational occupation 7 is limited

2% We repeated the power line magnetic field fluctuation measurement several times over a timespan of 2 months without
noticing a significant deviation from the curve presented in figure 2.33(a)
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by off-resonant carrier and heating-sideband excitations [204], in which case 7 is given by:

_— Qrep. 2 f] 2 1
(G| -5 e
where Q. is the Rabi frequency of the optical repumper, i the Lamb-Dicke parameter of the cooling
transition, and 7 the Lamb-Dicke parameter of the repumping transition, respectively. Hence — without
additional heating sources — the final temperature is independent of the cooling Rabi frequency and instead
solely determined by the repumper Rabi frequency. Consequently, an infinitely small repumper intensity
theoretically, allows us to achieve virtually 100 % ground state occupation. However, we have already
seen in the preceding sections that several heating mechanisms are present in our experimental apparatus,
including off-resonant scattering events (see sec. 2.4.1), potential position and depth fluctuations (see
sec. 2.1.2). Therefore, we need to incorporate these in our model and test whether these can explain the
experimentally attainable ground state population.
Still restricting our calculations to the lowest two vibrational levels, we obtain the following generalized

solution of the rate equations:

_ Htotal
L E— (2.54)
Ctotal + Htotal

where Hiqy, is the total heating rate and Cioy the total cooling rate. The heating rate comprises all
heating mechanisms which pump the atom from the ground state into the first excited level, whereas
the cooling rate acts in the opposite direction. In the following, we discuss the relevant heating rate
contributions and how to obtain first order quantitate estimates for each. A summary of the individual rate
components together with their scaling and quantitive estimates is provided in table 2.8. Our analysis will
primarily focus on the transverse Raman sideband cooling, since the cooling limitations of the microwave
sideband cooling for the experimental apparatus at hand, are rigorously discussed in Belmechri et al. [252].
This analysis concludes that we can achieve longitudinal ground state populations of up to 99 % using
microwave sideband cooling, which is in agreement with our experimental findings (see tab. 2.6).

A) Raman Sideband Cooling Rate:  Following the concept outlined in Leibfried et al. [204], the
cooling rate is given by the product of the probability to drive a Raman cooling sideband transition Pg(n)
for an atom in |7, n) and the repumping rate Qep.:

(n Vn Qr)*

Cr = Qrep. Pr(n) = Qrep.z(n\/EQR)2 L0
rep.

(2.55)

It is noteworthy that for Raman sideband cooling, the Lamb-Dicke parameter of the cooling and re-
pumping transition are fairly similar, hence, we will use n = 7 in the following. The cooling rate
Cr depends on the vibrational level of the atom and — as expected — vanishes once the atom is in its
ground state. Using the experimental parameters — Qe ~ 10kHz, Qr ~ 1kHz, and nt = 0.32 which
corresponds to vt = 20 kHz — we obtain a cooling rate of Cg = 10.3 quantas™'. However, each cooling
cycle includes a photon scattering event, which in turn may lead to an excitation through the recoil of
the photon. Therefore, since our trapping frequencies are not large enough to neglect these effect, we
need to incorporate this effect in the cooling rate. The likeliness to excite the atom in a scattering event is
given by the squared Lamb-Dicke parameter, which amounts to an excitation probability of 2 % for the
longitudinal and 10 % for the transverse direction, respectively. Furthermore, since the repumping laser
beam is collinear with the optical lattice, the photon recoil arising from the absorption cannot lead to
a transverse excitation. On the contrary, assuming in first order an isotropic emission, the recoil from
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Table 2.8: Summary of all transverse cooling and heating processes present during the transverse Raman sideband
cooling. Some heating mechanisms are also present after the cooling, which hence, limit the lifetime of the ground
state. More information on each rate can be found in the corresponding section.

Scaling Rate Present after cooling Discussion in
Cr Qrp Qrv' 10.0quantas™ no 252.A
Hr Qrep. Q}% y3 0.8 quanta s no 2.5.2.B
Hsepr vl 0.8 quantas™! yes 2.52.C
Hscup y! 0.1 quantas™! yes 25.2.C
Hscr Qrv! 0.3 quanta s no 252.C
Hscop Qrep.v‘l 0.1 quanta s no 25.2.C
Ha, » < 0.1quantas™! yes 2.52D
Hrne e < 0.1quantas™! yes 2.5.2.E
Hoppol V2 < 0.1 quanta s no 252 F
Chotal 10.0 quanta g1 252G
Hiotal 2.1 quantas™! 252G
Hark 0.9 quantas~! 25.2.G

the photon emission results in transverse excitation probability of 1/3 17%, for each of the two transverse
directions. The corrected transverse cooling rate then amounts to Cg = 10.0 quantas™'.

B) Off-Resonant Raman Sideband Heating Rate:  The analysis in the preceding section shows
that the cooling rate increases for larger Raman-Rabi frequencies. However, increasing the Raman-
Rabi frequency also increases the likeliness to drive off-resonant sideband transitions. The first order
contributions to the heating rate come from driving an off-resonant carrier transition followed by an
excitation in the repumping cycle, and from driving directly an off-resonant heating transition. Following,
again, the concept outlined in Leibfried et al. [204], the off-resonant transition probabilities are given by:

Qr\? Qr\?
Hg = (_R) 7 Qrep. +(4—$) 7 Quep. - (2.56)

2y
Using the experimental parameters given above, the heating rate induced by off-resonant Raman sideband
transition amounts to Hr = 0.2 quanta s7L.

C) Off-Resonant Scattering Heating Rate:  Using the tools we developed in section 2.4.1, we can
numerically calculate the off-resonant scattering rates — using the Kramers-Heisenberg formula — for
all laser sources which are present during the cooling process. These include: the lasers forming the
optical lattice, the hollow dipole trap laser, the pair of Raman lasers themselves, and the F- and mg-state
pumping lasers. Similar to the discussion above, we need to keep in mind the geometrical orientation of
each beam — with respect to the optical lattice — for the photon which is absorbed in the scattering event,
whereas we will treat the emission as isotropic. Furthermore, we need to distinguish between scattering
events which bring the atom back into its original qubit state and those which require additional F-,
mp-state pumping. For our analysis we will only consider first order contributions, since all higher orders
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scale with 77*, and correspondingly v~2, which can be neglected even for trapping frequencies as low as
20 kHz. For example, the heating rate arising from off-resonantly scattering photons of the optical lattice
is given by:

1
Hsepr = 577% [R|4,4>H|4,4> + Ria 4143 (1 + nph) + Ria )33 (1 + nph)] , (2.57)

where npy, is the average number of scattering events required until the atom is pumped back into the |T)
state using the F-, mp-state pumping light, which amounts to n,, ~ 2. Using the experimental parameters
we obtain Hscpr = 0.8 quantas™!, for the off-resonant scattering events induced by the optical lattice.
The heating rates arising from the hollow dipole trap laser, the pair Raman lasers, and the F- and mg-state
pumping lasers can be obtained in a similar fashion and are summarized in table 2.8.

D) Optical Potential Position Fluctuation Heating Rate: In section 2.1.2 we derived the general-
ized transition rates (see eq. (2.16)), which arise from positional fluctuations of the potential. Using these
transition rates, we obtain the following ground state heating rate:

3 4n*yv3mcs

HAx A

Sax(¥). (2.58)
Transverse potential fluctuations arise from pointing instabilities of the dipole trap lasers. A detailed
description how to experimentally measure these can be found in Kuhr [169]. In this thesis, instead, we
will reuse the power spectral density measurement presented in section 2.1.2 to derive an upper limit on
these fluctuations. As discussed in section 2.1.2, the position fluctuations in the longitudinal direction
are primarily caused by the phase noise of the frequency synthesizers driving the AOMs. This, however,
cannot lead to position fluctuations in the transverse direction, and hence the noise spectral density serves
only as a worst-case estimate. The ground state heating rate due to positional fluctuations of the optical
potential then amounts to Hpy, = 0.02 quanta s~!, which is still more than an order of magnitude smaller
than e.g. the heating due to off-resonant scattering events.

E) Optical Lattice Intensity Noise Heating Rate: = We already concluded in section 2.1.2, that the
intensity noise heating can be neglected in comparison to heating arising from positional fluctuations of
the optical potential. Nevertheless, for completeness, we can use the transition rates (see eq. (2.10)) to
derive the intensity noise ground state heating rate, which amounts to:

s

HInt = TS [(21/) . (259)
Please note, that for our model we only consider the lowest two vibrational level, however, intensity
noise produces only parametric excitations, hence, we included a factor of 1/2 in equation (2.59). Using
the experimental parameters we obtain Hy,e = 4 X 1076 quanta s~1, which is — as expected — neglectable
in comparison with other heating rates.

F) Imperfect Optical Pumping Polarization Heating Rate: In section 2.3.1, we demonstrated that
we achieve a o polarization purity of IT > 20 000" for the mp-state pumping light. The |1) state is
only a dark state for pure o+ polarized mp-state pumping light, therefore the remaining light leads to

30 The purity is defined as the ratio of o /o~ polarized light, for more details see [180]
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resonant scattering events. However, this scattering rate amounts to less than 1 kHz — for our experimental
parameters — and the corresponding heating rate to Hoppo < 0.1 quantas™.

G) Achievable Ground State Population and its Lifetime: Combining the individual heating rates
gives us a total heating rate of Ho = 2.1 quantas™ and a cooling rate of Cyoa = 10.0 quantas™!. Using
equation (2.54), we can, hence, determine a theoretical estimate of the mean vibrational occupation for
each of the two transverse directions, which amounts to ﬁ%leo = 0.17 and, correspondingly, a ground
state population of 85 %. This value agrees well with the 80 % ground state population we commonly
observe with the experimental apparatus at hand (see sec. 2.5.2). Furthermore, the framework developed
in the preceding sections allows us to investigate the transverse Raman cooling limit by varying the
Raman-Rabi frequency Qg and the repumping rate €, . While the trapping frequency would be another
interesting parameter, we are experimentally already at the limit of both the detuning and laser intensity,
as discussed in section 2.5.1. A numerical analysis of our model yields that we should be able to reach
a ground state occupation of up to 99 % for each of the two transverse directions by increasing the
Raman-Rabi frequency to 5 kHz, while decreasing the repumping rate to e, = 2kHz.

Furthermore, we can use our framework to extract the lifetime of atoms which were successfully
cooled into their vibrational ground state by evaluating the heating mechanisms which are present even
without sideband cooling. For each transverse direction we obtain a heating rate of HdTaIk = 0.9 quantas™!,
which is primarily limited by off-resonant scattering events induced by the state-dependent optical lattice.
We can also directly measure the transverse heating rate by extracting the mean transverse vibrational
occupation from Raman sideband spectra for increasing hold times between cooling and detection,
which is shown in figure 2.33(b). Using a simple exponential model, we extract the heating rate (red
line in fig. 2.33(b)), which amounts to HeTxp =38 J_“g quantas~!. This result, however, only serves as an
upper boundary. Unfortunately, our rather short population relaxation time of 77 = 100 ms, makes it
experimentally challenging to measure the transverse excitations for longer hold times. Already 10 % of
the spins have decayed after 20 ms, which reduces the signal to noise ratio, and hence results in a rather
large uncertainty of the mean transverse vibrational occupation (see fig. 2.33(b)).

Lastly, we can also use our framework to repeat the analysis for the longitudinal direction. Here, we
obtain a heating rate of Hﬁark = 3 quantas~!, which is almost entirely due to the phase noise of the optical
lattice (see sec. 2.1.2).

Outlook: Microwave Cooling of Transverse Vibrational Sidebands

From an experimental point of view — as discussed in section 2.5.2 — it would be desirable to also cool
atoms using microwave sideband cooling along the transverse direction. We also know that microwave
sideband cooling requires a transverse displacement of the |T) potential with respect to the ||) potential.
In principle, such a displacement could be realized using an additional 866 nm laser beam which is
e.g. ot polarized and collinear with the optical lattice, however, slightly displaced in the transverse
direction. Hence, controlling the intensity of the additional laser beam, would allow us to separate and
recombine the optical potentials in the transverse direction.

Out of curiosity we tested whether microwave coupling along the transverse direction also in the
existing experimental apparatus even without incorporating such an additional beam. Such a coupling
can arise if the hollow beam is not purely n-polarized, or also from light shifts if the atoms are not in
their vibrational ground state. In fact, the sideband spectra presented in figure 2.34(a) and figure 2.34(b),
respectively, clearly show sideband transitions +20kHz next to the carrier transition. The sideband
spectrum displayed in figure 2.34(a) is recorded using a Gaussian microwave m-pulse and the ensemble
was cooled along the longitudinal direction using microwave sideband cooling, hence, the longitudinal
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Figure 2.34: Transverse and longitudinal microwave sideband spectrum of an ensemble of atoms: Obtained using a
Gaussian microwave m-pulse (a) and using a long — decohered — square microwave pulse with a higher spectral
resolution (b). In the case of the latter, we also employ transverse microwave sideband cooling, which leads to a
visible asymmetry in the height of the transverse heating and cooling sideband transition.

cooling sideband transition (110kHz) is not visible. On the contrary, the sideband spectrum depicted
in figure 2.34(b) is obtained using a long — decohered — square microwave pulse with a higher spectral
resolution. Furthermore, it shows a first attempt to cool the transverse vibrational excitations using
microwave radiation. Using the fit model described in section 2.5.2 in combination with equations (2.52)-
(2.51), we extract the mean transverse vibrational occupation, which amounts to 27 = 1.6 +8§ , and the
corresponding transverse ground state population, which amounts to ng = (40 = 10) %. While these
results are a first indication of microwave transverse sideband cooling, prospective experiments need to

investigate the potential and limits of 3D microwave sideband cooling.
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CHAPTER 3

Low-Entropy States of Neutral Atoms in
Polarization-Synthesized Optical Lattices

OMPARED to other quantum systems, optical lattice potentials stand out for being naturally
scalable. They offer thousands of sites, arranged in periodic arrays, in which quantum
particles, such as atoms, can be confined and manipulated [255]. The idea of employing the
multitude of sites available as a well-controlled Hilbert space has influenced modern research

frontiers ranging from quantum metrology [174], quantum information processing [16, 67, 110, 127, 256,
257], discrete-time quantum walks [66], up to quantum simulations of strongly correlated condensed-
matter systems [42, 43, 258] with single lattice-site resolution [132, 259]. Substantial experimental
effort has recently been devoted to creating low-entropy states of atoms in the lattice, with each site
being occupied by an integer number of atoms. Low-entropy states play an essential role in a host of
quantum applications, including the creation of highly entangled cluster states for quantum information
processing [113], investigation of Hong-Ou-Mandel-like quantum correlations in many-body systems [17,
40], and the quantum simulation of quantum spin liquids in frustrated systems [260, 261].

To date, the approach that has proven most effective to generate low-entropy states in optical lattices
relies on a Mott insulator phase [42, 43]. This is denoted as a top-down approach since ultracold atoms,
due to interactions, self-organize in domains with integer filling factors. Other approaches [262] relying
only on laser cooling techniques have recently demonstrated filling factors beyond the one-half limit
imposed by inelastic light-assisted collisions [263, 264], though without providing a fully deterministic
method. In contrast, a bottom-up approach generating arbitrary low-entropy states from individual atoms
has long been desired [110, 256], yet never been experimentally realized.

In the following chapter, we discuss a bottom-up approach to generate arbitrary atom patterns, including
unity filling of lattice sites, in a one-dimensional (1D) optical lattice. Inspired by the seminal work
by Jaksch et al. [110] proposing spin-dependent optical lattices to control individual atoms’ positions,
our work realizes the atom sorting scheme proposed by Weiss et al. [265]. The experimental challenge
consists in developing spin-dependent optical lattices able to shift atoms by any amount of lattice sites
conditioned to their spin state. Previous implementations [113, 114] of spin-dependent optical lattices
were limited to only relative displacements of the two spin components and to relative shift distances
of one site at most. To overcome these limitations, we devised a scheme for spin-dependent transport
based on a high precision, large bandwidth synthesizer of light polarization. Hence, we refer to our new
implementation of spin-dependent optical potentials as polarization-synthesized (PS) optical lattices. In
contrast to the atom sorting technique formerly demonstrated by our group [266], which cannot resolve
single lattice sites, PS optical lattices allow us to reposition individual atoms with a precision of 1 A,
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reducing thereby the positional entropy of a randomly distributed ensemble to virtually zero. In addition,
the novel approach requires no post-selection, which have limited the success rates in earlier efforts to
create ordered patterns from a thermal ensemble [126, 195].

3.1 A Novel Approach to State-Dependent Transport

The key elements in realizing the spin-dependent optical-lattice potentials, which we introduced in
section 2.1.3, are two superimposed, yet independently controllable optical standing waves with opposite
circular polarization, o+ and o™,

Uy(x,1) = U} cos’tkprlx — xp (D]}, (3.1
Uy(x,1) = U} cos’tkprlx — xy (01}, (3.2)

with identical lattice constant apr = m/kpt. We operate both optical standing waves at a so-called magic
wavelength Apt of cesium, allowing atoms in |T) and ||) state to be trapped in the maximum-intensity
regions of the o*- and o -polarized light field, respectively (see sec. 2.1.3). Such a magic wavelength
was already employed in earlier implementations of spin-dependent optical lattices, for example in
Mandel et al. [113] and by our group [114]. However, these implementations permitted only relative
displacements and, most importantly, maximum shift distances of one lattice site, thereby precluding
the possibility of sorting randomly distributed atoms into predefined patterns. In contrast, PS optical
lattices entirely overcome these limitations by relying on two fully independent optical standing waves
(see fig. 2.9). In order to create the standing waves, we let two co-propagating laser beams with opposite
circular polarization each interfere with a linearly-polarized, counter-propagating beam, as illustrated
in figure 3.1(a). We employ an optical fiber to ensure that the resulting standing waves are perfectly
matched to the same transverse mode, and thereby that atoms in both spin states, |T) and || ), experience an
identical transverse potential. Transverse-mode filtering is essential to ensure long spin-coherence times
for spectrally-narrow coherent pulses (e.g., spin-flips for single-atom addressing, see section 2.3.4), or
else thermal atoms would undergo inhomogeneous spin dephasing in a few microseconds due to a strong
differential light shift [189]. We have seen in section 2.4.2 — using Ramsey interferometry — that our PS
optical lattice does not affect the spin-coherence time 7. Instead, spin-coherence time is limited rather
by other spin-dephasing sources, including stray magnetic fields and hyperfine-interaction-mediated
differential light shifts [182].

While in the transverse directions the two standing waves are perfectly overlapped, they are a priori free
to fluctuate in the lattice direction due to environmental disturbances (e.g., acoustic waves, mechanical
vibrations, and air currents). Fluctuations of their relative position must be suppressed with interferometric
precision' to avoid vibrational excitations when we spin-flip the atoms. Otherwise, as discussed in
section 2.5.2, the Franck-Condon factor would not amount to zero [252], hence, allowing microwave
operations to also change the vibrational state of an atom. Furthermore, the position of each standing
wave must be controlled to ensure that atoms are transported to the desired position. We achieve this by
employing two independent optical phase-locked loops (PLLs) that actively stabilize the phases of each
circularly-polarized beam, ¢1 and ¢, with respect to a common optical reference beam. As shown in
figure 3.1(b), each optical phase ¢1,, is referenced to a low-phase-noise RF signal (DDS). Varying the
phase of the RF signals according to a digitally programmed profile allows us to independently steer ¢1/,

! The relative position jitter must be much smaller than the harmonic oscillator length /7 b

tmes v,
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Figure 3.1: Schematic illustration of the experimental setup for polarization-synthesized optical lattices. (a) The
linearly polarized output of a Ti:sapphire laser is split by beam splitters (BS) into the reference beam, which is
used for the optical phase-locked loops (PLLs), and the beams forming the lattice in the vacuum cell. While the
polarization of the left lattice beam is static and linear, the polarization of the right lattice beam is synthesized by
overlapping two beams of opposite circular polarizations. The latter are combined by a Wollaston prism (WP) in
linear polarization basis (vertical V, horizontal H), spatially mode matched by a polarization maintaining optical
fiber (high polarization extinction ratio > 50 dB [267]), and transformed into circular polarizations by a 1/4 plate.
A fraction of light is diverted by a pickup plate (PP) into the optical PLL setup, which controls the optical phases
¢1 and ¢ by feeding RF signals back to the acousto-optic modulators (AOMs). (b) Optical PLL setup: the diverted
light is overlapped with a common reference beam. The resulting beat signals are independently recorded by fast
photodiodes (PD) after the WP. The phase of each beat signal is compared with a RF reference signal (DDS) using
a digital phase-frequency discriminator (PFD), and fed to a PID controller (10 MHz bandwidth), which steers the
corresponding AOM through a voltage-controlled oscillator (VCO). The DDS RF sources are phase referenced to
the same 400 MHz clock signal (CLK) and interfaced via USB with a computer. Three additional control-loop
setups (see sec. 2.1.1) independently regulate the intensity of each lattice beam by controlling the RF power of the
corresponding AOM. This figure is originally published in Robens et al. [3]

and thereby the position of the respective optical potential Uy, :

Apt $1/1(0)

2 2n G-

xp/u(0) =
Since we are working with deep trapping potentials (U° ~ kp x 75uK, see sec. 2.1.1), a spatial
displacements of the sub-lattice in turn leads to a translation of atoms occupying the related spin state.
In addition, we note that PS optical lattices not only allow us to arbitrarily steer the positions x|
but also the lattice depths U? i for each spin species individually. To that purpose, we employ separate
PID servo loops controlling the intensity I;,; of both co-propagating and the counter-propagating
beams, which we introduced in section 2.1.1. While the individual control of U? m plays no role for the
production of low-entropy states, it constitutes a crucial component in future applications, including
quantum optical control of atom transport [6](see sec. 3.4.2), non-equilibrium quantum thermodynamics
experiments [268], non-equilibrium localization experiments [269], and the quantum simulation of
quantum electrodynamics [51] and of impurity models [270, 271].

3.2 High Precision Polarization Synthesizer
In view of future quantum applications, where particles are in fragile quantum states delocalized over

many lattice sites, it is crucial to determine the precision attained by PS optical lattices. Ultimately, their
precision depends on the optoelectronic setup developed to coherently combine the two laser beams of
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Figure 3.2: Representation of the synthesized polarization state on the Poincaré sphere (see appx. sec. B.2.3) (a).
The effect of noise sources on the polarization state is also displayed. Circular regions close to the poles represent
exclusion regions not accessible by the polarization synthesizer due to the limited dynamic range of intensity
servo loops. The points represent three synthesized polarizations corresponding to two spin-dependent lattice that
are overlapped (b), relatively shifted by a quarter-period (c), and of different depths (d). This figure is originally
published in Robens et al. [3]

opposite circular polarization, which form the lattice potentials in equations (3.1)-(3.2). In essence, this
setup constitutes a polarization synthesizer capable of generating arbitrary polarization states, as shown
in figure 3.2. We quantify the precision of the synthesized polarization by measuring, independently,
both the relative intensity noise and the relative phase noise of the two circularly polarized beams. The
details of these measurements are discussed in section 3.2.2. Besides noise sources, we also consider
static imperfections originating from spatial polarization inhomogeneities over the cross section of the
synthesized beam, which is discussed insection 3.2.3. The results, summarized in table 3.1, show that
static polarization inhomogeneities are the dominating contribution degrading the polarization purity.
They also show that the measured phase noise A¢ is particularly small, corresponding to a jitter of the
relative position between the two standing waves equal to Ax = 1.20 A (see eq. (3.3)). This is more than
two orders of magnitude smaller than the extent of the atomic wave function in the vibrational ground
state (20 nm).

Static polarization imperfections produce spin-dependent deformation of the lattice potentials, one of
the main sources of inhomogeneous spin dephasing for thermal atoms [189]. In contrast, fluctuations of
the synthesized polarization due to phase and intensity noise can produce spin dephasing also for atoms
cooled to the vibrational ground state. In addition, fluctuations can also cause vibrational excitations, as
we have seen in section 2.5.2. However, we carried out independent measurements based on microwave
(see sec. 2.5.2) and Raman sideband spectroscopy (see sec. 2.5.2), obtaining less than ten vibrational
quanta per second (see sec. 2.5.2). This result is consistent with our analysis in sec. 2.1.2, where we
estimated the heating rate from the power spectral densities of phase and intensity noise [95, 96], revealing
in addition that the intensity-noise contribution is negligible on the scale of seconds.

Concerning the dynamical control of PS optical lattices, we measured the response function of the
polarization synthesizer for both the phase and intensity servo loops, obtaining a bandwidth of 800 kHz,
which is discussed insection 3.2.4. Such a high bandwidth allows us to perform arbitrary spin-dependent
lattice operations on the microsecond timescale, similar in magnitude to the typical timescales in trapped
ion experiments and orders of magnitude shorter than in typical neutral atom experiments. By sideband
spectroscopy, we furthermore observe that all transport operations employed for atom sorting leave 99 %
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Table 3.1: Sources limiting the precision of polarization synthesized states. For comparison purpose, we choose the
polarization extinction ratio 77 as a measure of the polarization purity. The details of the intensity noise measurement
and of the phase noise measurement are discussed in section 3.2.2, those of the spatial inhomogeneities in
section 3.2.3, respectively. The degree of polarization is abbreviated with DOP (see appx. sec. B.2.3)

U
Intensity noise AIIl = 0.04% 4x1078
Phase noise Ap = 0.1° 8 x 1077

99.990% 5x107°

Spatial inhomogeneities DOP

vacuum cell
PP PP vpr + 80 MHz — vpT
VN E—
| PD
VbT — PID X
—X v 80 MHz
DC
! 2upr + 80 MHz VCO
80 MHz
FPD
80MHz A1 A2 USB
T—— {>NWV\ DMiPFD}NWV\iDDsHmbedH%

Figure 3.3: Illustration of electro-optical setup employed to simultaneously stabilize the phase and intensity of
ot optical lattice. The same setup is also used for the o=~ optical lattice, which is not displayed for illustrational
purposes. See section 3.2.1 for more details. Used abbreviations: acousto-optic modulator (AOM), pickup plate
(PP), photo diode (PD), fast photo diode (FPD), proportional-integral—-derivative controller (PID), bias tee (T),
low noise amplifier (A1), limiting amplifier (A2), phase frequency discriminator (PDF), direct digital synthesizer
(DDS), ARM Cortex-M microcontroller (mbed), voltage controlled oscillator (VCO).

of the atoms in the longitudinal and transversal vibrational ground state, which is discussed insection 3.3.1.
This is even the case for non-adiabatic spin-dependent transport operations, taking 20 us per single-site
shift using a bang-bang-like transport pulse [272], which we use e.g. to realize discrete-time quantum
walks (see sec. 3.4.1).

3.2.1 Electro-Optical Setup of the Phase Lock

In the preceding section we introduced the experimental apparatus required to generate two independent
spin-dependent optical lattices, which is shown in figure 3.1. However, for simplicity, we omitted some
of the experimental details of the employed hardware. In this section we will rigorously introduce all
relevant components for one of the two optical phase locks as well as how we achieve both, phase
and intensity locks, using the same AOM. In fact, during recent years four Master projects have been
dedicated to study different aspects of the optical phase lock loop: one achieved a first proof of principle
version of the optical phase lock loop [77], one aimed to improve the phase lock photodiode [273],
another investigated the usage of digital instead of analog feedback controller [106], and the most recent
one developed a new frequency synthesizer [274].

The electro-optical setup for the o polarized optical lattice is illustrated in figure 3.3: We employ an
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AOM?, which shifts the frequency of the laser beam by 80 MHz. Subsequently, a fraction of the laser
beam is extracted for the intensity feedback loop, using a custom coated pickup plate®. The intensity
control loop corresponds chiefly to the one we introduced in section 2.1.1. However, now we mix* the
output of the analog PID controller® with the signal from the phase lock, instead of using a static 80 MHz
signal, to control the corresponding AOM. Additionally another fraction of the laser beam is extracted
for the optical phase lock loop?, as discussed in section 3.1. This fraction is overlapped with a reference
beam, the laser frequency of which is not shifted by an AOM. Hence, we create an optical beat signal
with sum frequency 2 X vpr + 80 MHz and difference frequency 80 MHz. The difference frequency
is detected using an ultrafast AC photodiode®, which has a bandwidth of 10 GHz. This bandwidth is
significantly higher than beat signal we intend to observe. However, when employing photodiodes
with a bandwidth of 150 MHz, we noticed a phase sensitivity to ambient light. Typically this is of no
concern, however, since we want to stabilize the optical phase with a precision below 1°, also small
amplitude to frequency conversions become critical. We use a bias tee’ to provide the required bias
voltage of the fast photodiode, which guarantees a DC free RF signal behind the bias tee. Subsequently,
the signal is amplified in two stages: first by a low noise amplifier® and then by a limiting amplifier’.
The former is specifically designed to amplify signals with low amplitudes, such as our beat signal. The
latter is employed to “digitize” the RF signal, which is indicated by the square wave in figure 3.3. This
digitalization prevents possible amplitude to phase conversions, which can occur when we change the
depth of the optical lattice. The phase of the digitized signal is then compared to the one from the DDS'’,
using a phase frequency discriminator'!, as discussed in section 3.1. More information on the circuit
diagram of the PFD, which was designed by Professor Marco Prevedelli, can be found in Hild [275]. The
resulting error signal is fed to an analog PID controller’, which controls the phase and frequency of the
voltage-controlled oscillator'?. The VCO signal is then mixed* with the previously introduced signal
from the intensity control loop. Its is possible to stabilize the phase and intensity of the optical beam
independently since these are orthogonal parameters. Nevertheless, in the experimental setup, we notice
a marginal crosstalk between the locks. However, this crosstalk has no significant impact on the atoms
since it is barely above the noise floor.

3.2.2 Intensity and Phase Noise

A differential intensity noise between the o polarized and the o~ polarized laser beams leads to time
dependent fluctuations of the desired polarization state. Differential intensity noise can be visualized
as a rotation in the plane which is perpendicular to the equatorial plane of the Poincaré sphere (see
fig. 3.2). However, if these intensity fluctuations are faster than our detection technique, they will “wash
out” and instead appear as a reduction of the degree of polarization (DOP, see appx. sec. B.2.3), and
correspondingly a reduced linear extinction ratio 7. These two quantities are mathematically related

2 Gooch & Housego: AOM 3080-122

3 Altechna: BK7 glass plate, 2° wedge, coating side 1: AR, coating side 2: PRs, PRp = 12 % for 45° AOI
# Mini-Circuits: ZLW-6+ frequency mixer

3 Vescent Photonics: D2-125 laser servo

6 HAMAMATSU: G4176-03 ultrafast MSM photodetector

7 Mini-Circuits: ZX85-12G+ bias tee

8 Mini-Circuits: ZFL-500HLN+ low noise amplifier

® Analog Devices: EVAL-AD8306 high precision limiting-logarithmic amplifier evaluation board
10" Analog Devices: EVAL-AD9954 400 Msps, 14-Bit, direct digital synthesizer

1 On Semiconductor: MC100EP140 phase-frequency detector

12 Mini-Circuits: ZX95-78+ voltage-controlled oscillator
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Figure 3.4: (a) Opto-electrical setup to measure the differential phase noise between the o+ and the o~ polarized
laser beam: The phase noise is inferred from the transmission of a synthesized linear polarization through a
45°-oriented analyzer. The resulting intensity fluctuations are recorded using a fast photodiode, the signal of which
is analyzed with a spectrum analyzer. (b) Obtained phase noise spectral density yielding a total differential phase
noise of A¢ = 0.1°.

by [180]:
DOP = 1 - 2. (3.4)

Likewise a differential phase noise between the o polarized and the o~ polarized laser beams can be
visualized as a rotation in the equatorial plane of the Poincaré sphere (see fig. 3.2), which similarly leads
to a degradation of the linear extinction ratio n [180].

We introduced in section 2.1.2 an experimental procedure, which allows us to measure the intensity
noise spectral density of laser beams in our experimental apparatus. After performing such a measurement
for each of the two laser beams, we obtain the relative intensity noise (RIN) by integrating the noise
spectral density from 1 Hz to 25 MHz. The relative differential intensity noise Al/I, given in table 3.1, is
then defined by:

AI/IZ(IT—Il)/(IT+Il), 3.5)

and the corresponding contribution to linear extinction ratio 7 by [180]:
n~ (A/D* /4. (3.6)

Hence, we obtain a RIN of 0.04 %, per laser beam, which limits the linear extinction ratio of our
polarization synthesizer to 7 = 4 x 1078.

The differential phase noise is measured as outlined in figure 3.4(a): both beams (o* and o) are
adjusted to have the same phase and intensity to create a synthesized linear polarization. Since we cannot
measure the differential phase noise directly, we instead convert phase noise into intensity noise using a
45°-oriented Glan-laser polarizer, as illustrated in figure 3.4(a). The resulting intensity fluctuations of
the transmission through the polarizer is, thus, recorded using the spectrum analyzer'® we employed to
measure the intensity noise spectral density. The desired phase noise spectral density, which is displayed
in figure 3.4(b), is then obtained by converting the intensity to phase. Integrating the noise spectral
density from 1 Hz to 25 MHz gives us the total differential phase noise A¢ = ¢ — ¢, which amounts
to 0.1°. This phase noise, in turn, leads to a reduced linear extinction ratio of = 8 X 1077, according

13 HP: 3589A Spectrum/Network Analyzer, 10 Hz to 150 MHz
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Figure 3.5: (a) Beam profile measurement of a synthesized linear polarization. Please note: the ring-like structures
are caused by small dust particles on the CCD sensor. (b) Beam profile measurement of the same synthesized
linear polarization, which passes through a linear polarizer set to extinction. The remaining transmission shows
ring-like structures, which originate from the optical fiber coupler.

to [180]:
n~ (Ap)*/4. (3.7

3.2.3 Spatial Polarization Inhomogeneities

The analysis of the preceding section concluded that our polarization synthesizer should be able to
generate a linear polarization with an extinction ratio of 7 < 1 x 107%. However, the extinction ratio we
measure by a linear polarizer'* in extinction configuration, amounts to 7 ~ 5 x 107>, This discrepancy,
in fact, is caused by spatial polarization inhomogeneities, which we neglected so far. Spatial polarization
inhomogeneities can be characterized with a beam profile CCD-camera'” by recording the synthesized
beam which passes through a linear polarizer in extinction configuration. Figure 3.5(b) shows the result
of such a measurement. By additionally also recording the beam profile without polarizer (see fig. 3.5(a)),
we estimate the degradation of the extinction ratio as a result of spatial inhomogeneities, which amounts to
17 =2 x 107, At first sight it might be surprising that the estimated extinction ratio is worse than the one
we obtain from the first measurement, where we used a power meter instead of the beam profile camera.
However, this can be explained: When we use the beam profile camera, we measure the extinction of a
collimated beam, whereas in the other case we measure the extinction ratio of a focussed beam — also the
atoms are located in the focus of the optical beam. Most of the light, which passes through the polarizer,
shows ringlike structures. Since these ring structures become equally distributed in the focus of the beam,
we consequently obtain a lower extinction ratio.

At the current time, we do not fully understand the physical mechanism which causes these ringlike
spatial polarization inhomogeneities. Nevertheless, we could experimentally verify that they originate
from the optical fiber coupler, which combines the o* and o~ polarized beam (see fig. 3.1).

14 we verified separately that the polarizer itself is capable of producing and detecting polarizations on the order of 7 = 1 x 10~

15 Ophir: Spiricon LW230
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Figure 3.6: (a) Closed loop step response of the optical phase lock controlling the o* polarized laser beam. At
time ¢ = Ops the reference phase of the corresponding DDS is increased by 10°. (b) Corresponding bode plot
which reveals the spectral response of the control loop: the gain stays close to unity up to the lowpass-like cut-off
at 800 kHz.

3.2.4 Control Bandwidth of the Polarization-Synthesized Optical Lattice

We infer the control loop bandwidth of all intensity and phase control loops by recording the systems
response to step like change in the control parameter. Figure 3.6(a) exemplarily shows the response of
the phase lock, which controls the phase of the o-* polarized laser beam. The displayed time trace is
obtained using a similar setup as depicted in figure 3.4. However, this time we record the voltage signal
of the photodiode with an oscilloscope and not with the spectrum analyzer. To create a step like change
for the phase lock loop, we increase the phase of the corresponding DDS by 10°, at time ¢ = Ous, and
record the response of the optical phase lock. In order to extract the bandwidth of the corresponding
phase lock, we need to convert the step response into an impulse response. The impulse response can
then be used to obtain the spectral response of the control loop through a Fourier transformation [274].
The bode plot, corresponding to the time trace shown in figure 3.6(a), is displayed in figure 3.6(b), from
which we infer a 3 dB cut-off at 800 kHz (dashed red line). The 3 dB cut-off is commonly referred to as
the bandwidth of the control loop [274]. The bandwidth of the phase lock is primarily limited by the
finite dead time of the AOM, which amounts to 300 ns [77].

The phase lock loop of the o~ polarized laser beam, as well as both intensity control loops, have a
similar spectral response, hence, we omit these measurements here. Nevertheless, it is noteworthy that
the application of internal model control theory promises to extend the bandwidth even further up to
10 MHz by compensating for the dead time of the AOMs [274, 276].

3.3 Sorting Individual Atoms in Polarization-Synthesized Optical
Lattices

In the following we will discuss, how we use our PS optical lattice in combination with techniques we
introduced in chapter 2 to rearrange individual cesium atoms from a dilute thermal ensemble into a
predefined, ordered distribution. This atom sorting procedure works akin to Maxwell’s demon [265]. In
essence, an automated feedback-based experimental setup acquires the initial location of atoms through
fluorescence imaging with single site precision, and it uses this information to subsequently shift the
atoms, one by one, to form the desired pattern. We will keep the o* polarized optical lattice fixed, which
serves as a storage register for atoms in |T), while the o~ polarized one is mobile, providing a shift
register for atoms in || ).
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Figure 3.7: Transport success rate measurements: (a) The blue dots represent the fraction of atoms which reaches
the exact target location for increasing transport distances, whereas the green dots represent the fraction of atoms
which are detected in one of the neighboring lattice sites. (b) The blue dots represent the combined transport
success rate (target and neighboring lattice sites), whereas the green dots indicate the probability of a single atom
to remain trapped during the transport operation.

In section 3.3.1 we will verify that our PS optical lattice allows us to transport atoms over several
tens of lattice sites with single lattice site precision without creating vibrational excitations. These
transport operations embody a crucial part in the generation of low-entropy states, which are discussed
in sec. 3.3.3. Furthermore, the preparation of low-entropy states or also pairs of atoms (see sec. 3.3.4)
requires us to employ real time feedback. For this purpose we developed a novel control software for the
experimental apparatus, which allows us not only to realize real time feedback, but also fully automizes
most experimental sequences. This control software and specifically the part which is utilized to sort
individual atoms is introduced insection 3.3.2.

3.3.1 Classical Atom Transport

Our newly developed PS optical lattice overcomes the shortcomings of previous implementations [113,
277] which e.g. were limited to a simultaneous displacement of both sub-lattices in opposite direction by
rotating the linear polarization of one of two counter-propagating laser beams with an electro-optical
modulator (EOM). The EOM based spin-dependent transport, furthermore, also suffers from a maximum
achievable separation of the o and o~ lattice by one lattice site. Therefore, additional spin-flips are
required to transport an atom over several lattice sites [277]. These in turn substantially limit the transport
efficiency as it decreases exponentially with the number of transported lattice sites. Even with the best
reported efficiency of 99 % per shift operation [277], the transport efficiency over 20 sites had never
exceeded 0.99°%° ~ 67 %.

In order to attest the reliability of our PS optical lattice — in comparison to previous implementations —
we measure the transport efficiency by translating spin-polarized atoms in |T) using a single adiabatic
transport operation over 20 lattice sites. The atoms are initialized in |T) employing optical mg-state
pumping (see sec. 2.3.1) and their position determined before and after the transport operation using
fluorescence imaging, as discussed in section 2.2.3. Using this procedure we obtain a transport efficiency
of (97.4 =+ 3) %, where the remaining unsuccessful events can be attributed to optical pumping errors
(0.4 %), spin-flips during transport (0.6 %) and position reconstruction errors (1.6 %).

Additional measurements, summarized in figure 3.7, show that the transport efficiency remains well
above 95 % for transport distances of up to 100 lattice sites. Each dot in figure 3.7(a) represents the result
from a single transport efficiency measurement: the blue dots represents the fraction of atoms which
reaches exactly the target lattice site, whereas the green dots represent the fraction of atoms which are
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detected in one of the neighboring lattice sites. The decreasing transport efficiency for larger distances is
not a result of the PS optical lattice not being shifted far enough, instead this reduction is caused by an
outdated version of the position reconstruction algorithm, which was not reliable for distances of more
than 50 lattice sites. In fact, these results inspired an improvement of the reconstruction algorithm, which
we reported in Alberti et al. [2]. Instead of using a single LSF for the entire field of view, the improved
algorithm accounts for spatially varying optical aberrations by reconstructing the atoms’ positions with
different LSFs, depending on their absolute position in the optical lattice. Figure 3.7(b) shows the
combined — target and neighboring lattice site — transport efficiency (blue dots) as well as the probability
of an atom to survive the transport operation (green dots). We notice an increased probability to lose an
atom during the transport operation for distances over 50 lattice sites. This is not an intrinsic problem of
the employed transport operations, but rather a direct consequence arising from the discretization of the
transport ramp generated by the DDS. The currently employed DDS is limited to 1024 phase points per
transport operation, hence, when transporting atoms over larger distances the atoms no longer “feel” a
smooth ramp, but instead receive individual kicks each time the phase is updated. Our newly developed
versatile digital frequency synthesizer [106] will hurdle down this shortcoming, since it is capable of
storing two orders of magnitude more phase points.

Measuring Transport Excitations Using Sideband Spectroscopy

In the following section we will make use of the sideband spectroscopy tools we introduced in section 2.5.2
to quantitatively measure the probability to create a longitudinal or transverse excitation as a result of
the transport itself. For this purpose we first cool the atoms into — or close to — their vibrational ground
state (see sec. 2.5.2), which also initializes all atoms in |T). Then we translate the o* lattice using a 1 ms
long sinusoidal phase ramp, which leads to an adiabatic acceleration and deceleration of the transported
atoms. Directly after the translation we employ either microwave radiation to probe the longitudinal
vibrational occupation (see sec. 2.5.2), or Raman laser radiation to probe the transverse vibrational
occupation (see sec. 2.5.2). The resulting mean vibrational occupation (see eq. (2.51)), as a function
of the transport distance, is displayed in figure 3.8(a) for the longitudinal direction and in figure 3.8(b)
for the transverse direction, respectively. It is noteworthy that we have to be careful when trying to
interpret the mean vibrational occupation according to equation (2.51): if we cool all atoms truly into
their vibrational 3D ground state, the corresponding distribution would no longer be described by a
thermal Boltzmann distribution, which is one of the assumptions in the derivation of equation (2.51).
Furthermore, excitations caused by transport operations cannot be classified as a thermal heating process,
instead they need to be regarded as a coherent operation, which raise the vibrational level. However, we
will use 7/T as a measure for the analysis summarized in figure 3.8, since we measure no impact of the
transport on the vibrational excitations along the longitudinal direction and only a marginal one in the
transverse one (< (9 +3) x 1073 excitations per transported lattice site), .

Loss-Free State Detection

Our PS optical lattice also opens up a way to infer the atoms’ qubit state, without removing some of the
atoms from the lattice. This is achieved by mapping the spin information onto the position of the atom
which enables us to detect both internal states for every probed atom, thus eliminating the shortcoming
of push-out detection (see sec. 2.3.1) typical of single atom interferometers [114]. Furthermore, this
state detection technique allows us to infer the qubit state during an experimental sequence, which is a
fundamental prerequisite for the experiments presented in chapter 4. Lastly, we can also use the transport
fidelity measurements — presented above — to precisely characterize the mg-state pumping success rate.
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Figure 3.8: Mean longitudinal (a) and transverse (b) vibrational occupation as a function of the transport distance.
Obtained by performing sideband spectroscopy on an ensemble of atoms, which is initialized in |T), cooled close to
the 3D ground state, and subsequently adiabatically transported by shifting the o lattice.

We analyze the fraction of atoms which remain in their initial position after the transport operation. The
resulting state preparation success rate amounts to (99.6 + 0.4) %.

3.3.2 A Novel Control Software and the Feedback Algorithm

Almost all experiments carried out with the experimental apparatus at hand, prior to those presented in
this thesis, were obtained by employing static experimental sequences [66, 114, 126, 245]. However,
the sorting of individual atoms in our PS optical lattice — and all experiments based on this technology —
require real-time feedback, since we need to reprogram the hardware depending on the atoms’ positions.
For this purpose Jonathan Zopes and myself developed a novel control software — using Matlab [109]
— which is not only capable of controlling all experimental hardware'®, but furthermore, also acquires
and analyses data in real-time. In its current version it can conduct nearly all experimental sequences
presented within this thesis automatically. This also includes periodically verifying that all required
hardware is operational (e.g. laser locks) and several fully automized calibration methods, spanning from
simple task (e.g. the optical lattice depth, or adjusting the relative phase of our PS optical lattice) to more
complex ones (e.g. calibrating the magnetic field gradient using the method introduced in sec. 2.3.4) [188].
Such an automatization of the measurement and analysis procedure is inevitable, considering that modern
experiments are becoming increasingly complex [278]. In the following we will discuss the feedback
algorithm, which is employed to control the position of individual atoms utilizing our PS optical lattice.
This algorithm essentially consists of two stages: the first stage of this algorithm ensures that N well
separated atoms are stored in the optical lattice, whereas the second stage rearranges these atoms until
the target ensemble is generated.

Initially, the atoms are stochastically loaded from a magneto-optical trap into the spin-dependent
optical lattice (see sec. 2.1). The feedback algorithm infers the number and position of these atoms
by recording fluorescence image, which is analyzed using the super-resolution algorithm introduced in
section 2.2.3. If more than the required number of atoms are loaded into the optical lattice the qubit state
of the rightmost N atoms is flipped from |T) to ||), which allows us to remove all additional atoms from
the optical lattice with the spin selective push out laser beam (see sec. 2.3.1). The local addressing of
individual atoms is achieved by the spectrally narrow microwave pulses in combination with a weak
magnetic field gradient, which we introduced in section 2.3.4. Alternatively, if the number of atoms is
lower than required by the desired target ensemble, or if the interatomic separations are below dyw = 20

16 Up until today more than 16 different devices are controlled through a variety of interfaces, including PCI, PCle, ethernet,
USB, GPIB, and serial port [188].
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Figure 3.9: Atom sorting in polarization-synthesized optical lattices. (a) Central building block of the atom sorting
procedure: (1) the leftmost atom (marked by the dashed circle) is transferred from the storage register (upper
lattice) into the shift register (lower lattice) by a microwave pulse, (2) transported by two sites to the right by
shifting the lower lattice, (3) and transferred back into the storage register. (b) - (e) From top to bottom, four
atoms deterministically placed at equidistant separations of dareer = (10,5, 2, 1) lattice sites. Left panels: recorded
single-shot fluorescence images. Right panels: vertically integrated distributions with the fitted intensity profiles
(continuous red curves) and the reconstructed positions (vertical dashed lines). This figure is originally published
in Robens et al. [3]

lattice sites, the algorithm automatically loads a new ensemble of atoms into the optical lattice. The
minimal separation dyw in between atoms ensures a probability < 1 % that local addressing pulses
spin-flip a neighboring atom (see sec. 2.3.4).

The second stage of the feedback algorithm consecutively rearranges the separated N atoms by first
computing the required transport operations from a fluorescence image and then iteratively repeating
the following procedure, which is illustrated in 3.9(a): Optical mg-state pumping prepares all atoms
in the storage register (0" lattice). Subsequently one atom is transferred from the storage register into
the shift register (o~ lattice) using the local MW addressing technique. Finally the transferred atom
is repositioned to its target location by translating the shift register. A total of N — 1 addressing and
shift operations are required to generate the target ensemble, since the translational invariance of the
optical lattice allows us to define the rightmost atom as a reference point. After resorting all atoms the
feedback algorithm records a final fluorescence image to verify whether the atom positions coincide
with the target ensemble. If errors are detected in the final distribution (e.g., imperfect spin-flips, wrong
position reconstruction, atom losses), the feedback algorithm attempts to correct them.

3.3.3 Unity Filling in Polarization-Synthesized Optical Lattices

The principal result of the atom sorting is shown in figure 3.9: four cesium atoms from a dilute
thermal ensemble are rearranged into a predefined, ordered distribution inside a 1D optical lattice. The
fluorescence images in figure 3.9(b-e) show the final distribution of atoms for four different target patterns,
including unity filling of a region of the lattice, which were obtained by employing the feedback algorithm
described in the preceding section
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Since we require N atoms to remain trapped during O(N — 1) addressing and positioning operations, the
efficiency of the sorting procedure scales as PV g yielding a super-exponential decay with the probability
P of a single atom to remain trapped in the optical lattice after each operation. Similarly, we find an
exponential decay with the addressing and transport fidelities. While the number of atoms that can be
prepared in arbitrary positions, is fundamentally not limited, experimental imperfections currently restrict
the attainable ensemble size to N = 4, with a success rate of circa 10 % for N = 4. The main limitations
of this success rate arise from heating of atoms (see section 2.1.2), a limited addressing fidelity of the
local MW addressing pulses (A = 86 %, see section 2.3.4) arising from decoherence by differential light-
shifts [189], and transport errors resulting from position detection errors (see section 3.3.1). Heating of
atoms is not only caused by the previously mentioned phase noise of the DDS but also by a discretization
problem arising from a limitation of 1024 phase points per transport operation, which we discussed in
section 3.3.1. Utilizing the latest generation of DDS chips we expect to reach a probability for a single
atom to remain trapped in our PS optical lattice of P > 99 %.

So far we have not considered using a reservoir of atoms, which provides compensation for those
atoms that get lost during the sorting. However, in our one dimensional optical lattice and relying on a
magnetic field gradient to realize local addressing of atoms we cannot benefit much from an additional
reservoir. Even in the best possible case we will be limited to 10 well isolated atoms, since we require a
minimal addressing separation of dyw = 20 lattice sites. A theoretical investigation conducted by Weiss
et al. [265] concluded that atoms can be compactified more efficiently in higher dimensions. According
to their work, the scaling of the required number of sorting operations for N atoms in d dimensions is
given by N a. This would require us to carry out 25 sorting operations to compactify 100 atoms in a two
dimensional lattice [279]. However, their algorithm was developed at a time, where state-dependent
transport over several tens of lattice sites was not conceivable and, hence, it does not include the transport
operations our PS optical lattices can perform. In the following, we will briefly discuss an efficient sorting
algorithm which is tailored to the next generation experimental apparatus utilizing a two-dimensional PS
optical lattice [149]. In comparison, our algorithm requires on average only 3 sorting operations to create
aregion of 10 x 10 lattice sites with unity occupation.

Outlook: Sorting Atoms in a Two-Dimensional State-Dependent Optical Lattice

Before we discuss the idea of the algorithm let us first make both a conservative and an optimistic estimate
of the expected addressing fidelity and atom storage time of the new experimental apparatus. This
apparatus will host our new high-NA objective lens, which we introduced in section 2.2.4. The objective
lens achieves a diffraction limited resolution of 460 nm, which significantly boosts the localization
precision (see sec. 2.2). Consequently, we expect to determine the lattice-site positions of single atoms
with high reliability even for image acquisition times below 50 ms. Furthermore, the high-NA objective
lens enables us to utilize state of the art single addressing of individual atoms by using a focussed laser
beam to create local AC-Stark shifts [200]. It was just recently demonstrated by Wang et al. [67] that
the fidelity of this technique can exceed 99 %. Consequently, we will assume a fidelity of 90 % for our
conservative estimate and 99 % for the optimistic one. Since the storage time is essentially only limited
by the rate at which atoms collide with the background vapor, we can estimate a storage time between
60 s and 360 s (see sec. 2.1.2). Initially the atoms are randomly distributed the 2D optical lattice, which
we will assume to be 100 x 100 lattice sites [149]. The filling factor of the lattice can vary from 20 % to
65 % — determined by how many atoms are initially captured by the magneto-optical trap. Anticipating
the results presented in the following section, in our experimental apparatus, light-assisted collisions
can lead to initial filling factors of 65 %. Furthermore, Griinzweig et al. [280] demonstrated that filling
factors exceeding 80 % can be realized using an additional blue-detuned laser beam.
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Figure 3.10: (a) Randomly distributed atoms in a 2D optical lattice with 20 % filling. The red square represents
the densest 21 X 21 region. (b) Conservative estimate: unity occupation of 400 atoms (21 X 21) obtained after 12
sorting operations. (¢) Optimistic estimate: unity occupation of 5000 atoms (71 X 71) obtained after 16 sorting
operations.

The first step of the 2D sorting algorithm is to analyze the initial atom distribution and identify the
densest region, which is illustrated by the red square in figure 3.10(a). In the iterative stage the algorithm
creates a mask of the remaining holes in the ensemble and searches the reservoir for a region which best
matches the hole pattern. Single site addressing transfers all required atoms from the storage into the shift
register, which are then shifted to the target location using a single transport operation. A subsequent
fluorescence image detects possible errors, before the algorithm enters the next iteration. For a filling
factor of 50 %, each iteration will reduce the remaining holes in the target assemble by 1/2, leading
hence, to a logarithmic scaling of the algorithm. However, due to entropy, occasionally there exist a
pattern of atoms in the reservoir which matches particularly well with the holes in the target, allowing the
algorithm to converge even faster.

In the case of our conservative estimate (addressing fidelity 90 %, storage time 60 s, initial filling 20 %)
it is conceivable to create unity filling in a region of 21 x 21 lattice sites in less than one second (on
average 12 iterations), which is illustrated in figure 3.10(b). Furthermore, figure 3.10(c) displays the
outcome for the optimistic estimate (addressing fidelity 99 %, storage time 360 s, initial filling 65 %),
which allows us to achieve unity filling in a region of 71 x 71 lattice sites in less than one second (on
average 16 iterations). While it is likely that there exist even further optimized sorting algorithms, these
results highlight the scalability of our PS optical lattices, especially in comparison to recent results using
micro potentials [18, 19].

3.3.4 Pair Production and Parity Projection in Polarization-Synthesized Optical
Lattices

Beyond preparing unity filling, we demonstrate that the same atom sorting technique can be applied
to deterministically prepare a pair of atoms in the same lattice site. We will see in the following, that
our measured efficiencies (Pgycc. > 90 %) exceed state of the art results, obtained by overlapping two
micro-potentials via spatial light modulators [281]. An efficient method of generating atom pairs is of
particular interest, since it embodies one of the two indispensable building blocks of our Hong-Ou-Mandel
experiment (see section 5.2) and, further, represents a fundamental prerequisite to study atom-atom
interactions occurring via ground-state collisions [110, 113].
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Figure 3.11: Probability of zero-, one-, and two-atom events for final interatomic separations dg, = [+2, +1,0].
The dashed red line corresponds to the theoretical expectation of losses, which are uncorrelated with light-assisted
collisions. The errors are estimated using the Clopper-Pearson method (@ = 0.32) and each preparation distance
comprises approximately 150 individual measurements. This figure is adapted from Zopes [188]

In the preceding section we discussed that our position reconstruction algorithm becomes less reliable
for interatomic distances beyond 100 lattice sites. For the pair production, we circumvent this shortcoming
by first preparing two atoms at fixed absolute positions in our PS optical lattice with an interatomic
separation of dinjia1 = 20 lattice sites. Once the initial configuration is achieved, both atoms are optically
pumped, the left atom transferred into the shift register, which is then transported to position of the
right atom. We probe the final distribution by recording a fluorescence image. It is not possible to
directly observe two atoms in the same lattice site using the fluorescence imaging. During the imaging
process atoms in a common lattice site undergo collisions, which are induced by the illumination lasers
themselves [282]. These light-assisted collisions lead to the loss of either one or both of the collision
partners on timescales much shorter (100 pus [283]) than the exposure time which is on the order of
15 [284]. In fact, in a variety of experimental setups from other groups (e.g. [17, 259, 283]) light-assisted
collisions lead to a nearly perfect parity projection of the atom number which occupies a single lattice
potential well: if the atom number is even all atoms are lost, while an odd number leaves always a single
atom behind. However, this strongly depends on the experimental parameters, including the atom species,
the depth of the optical potential, as well as frequency and intensity of the illumination lasers [284].
Therefore, we additionally conduct reference measurements by transporting the left atom not exactly into
the same lattice site as the right one, but displaced by dgna = [£2, 1] lattice sites.

Figure 3.11 displays the relative occurrences at which we observe either two, one, or zero atoms in
the last fluorescence images for both the pair production and reference measurements. These rates show
a significant discrepancy between the pair production and the reference measurements. However, our
measurements reveal that light-assisted collisions for the experimental apparatus at hand do not lead to
flawless parity projection. Instead, we observe significantly more cases where a single atom remains in
the optical lattice.

The reference measurements agree well with the probability for k out of 2 atoms to remain trapped in
the optical lattice — uncorrelated with light-assisted collisions. The probability is given by the following
binomial distribution (see dashed lines in fig. 3.11):

S (k) = (i)(l - Sk sk, (3.8)
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Furthermore, we can use the uncorrelated probability S of a single atom to remain trapped, to construct a
simple model for the pair production events. This model, in turn, allows us to extract the rate Ppac, at
which we loose either one or both atoms due to light-assisted collisions, as well as the success rate Pgcc.
of successfully generating an atom pair:

0 atoms survive = (1 — S )2 + S2Pgucc PLAC
Probability that: 1 atom survives =25(1 - S)+ S 2 Pguce. (1 = Prac) 3.9)

2 atoms survive = S (1 — Pgyec)

Applying this model to the data presented in figure 3.11, yields a success rate of Pgyec. = (91 + 3) % and
Prac = (71 £ 5) %. Therefore, if we image two atoms in the same lattice site, we have a 70 % chance to
loose both atoms due to light-assisted collisions, whereas in the remaining cases a single atom remains in
the optical lattice. The extracted success rate Py, to create a pair of atoms in a common lattice site
using our PS optical lattice, demonstrates a significantly improvement in comparison to previous results
achieved by our group. Using the EOM based spin-dependent transport the best reported success rate is
Pguce. = (37 = 8) % [53] and by employing two crossed optical lattices Pgyce, = (16 £ 4) % [266].

3.4 Coherent Delocalization of the Atomic Wave Function

The transport operations we discussed in the preceding sections can all be classified as classical transport:
we transported a single atom trapped in a quantized optical potential, however, so far coherences did
not play an essential role in the transport, since we exclusively transported atoms in pure states (|T)
and |])). In the following we will discuss how we utilize our PS optical lattice to achieve quantum
transport, which allows us to coherently delocalize the atomic wave function. However, for coherent
transport we cannot make use of the adiabatic transport operations we employed so far, simply because
they last longer than our coherence relaxation time 7, (250 us < 1 ms). Instead, we make use of the
so-called bang-bang technique [272], which allows us to transport an atom over one lattice site within
20 us without creating motional excitations. This technique has been routinely employed by our group
for several years [66, 116, 209]. In its core, it consists of two well timed delta-like kicks onto the atoms
by abruptly accelerating and decelerating the optical lattice. The time in between the two kicks must be
chosen exactly as an integer multiple of the atoms’ longitudinal oscillation period 1/vy. More recently,
we investigated optimal control theory, which allows us to decrease the transport time even further (see
sec. 3.4.2).

3.4.1 Discrete-Time Quantum Walks

Introduced by Richard Feynman to model the one-dimensional motion of a spin-1/2 particle [285],
discrete-time quantum walks can be regarded as the archetype of quantum transport experiments. While
quantum walks share many similarities with classical random walks, the behavior of these two transport
paradigms is strongly different [286].

In a “classical”, one dimensional, random walk scenario, a particle moves in discrete steps, either
leftward or rightward, with the direction determined by the result of a coin toss. After iterating the
sequence of coin toss and subsequent displacement 7 times, one finds the binomial distribution (’;)/2"
describing the motion of the particle simply by enumerating the trajectories terminating in position x.
The Brownian motion of colloidal particles suspended in a liquid is a well-known example of this type of
diffusive classical transport. Discrete-time quantum walks are the quantum analog of “classical” random
walks. As shown in figure 3.12(a), a quantum walker, rather than tossing a real coin, is put at every time
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Figure 3.12: Discrete-time quantum walks in position space. (a) Discrete unitary operations defining the quantum
walk’s step. (b) Delocalization of the quantum walker over multiple paths. The number of paths increases
exponentially with the number of time steps. This figure is originally published in Robens et al. [4]

step in a coherent superposition (coin operation) of the qubit states, |T) and ||), and it is subsequently
shifted by one lattice site in a direction subject to the spin state (spin-dependent shift operation), e.g.,
[T) to the left and ||) to the right. Since the first realization of quantum walks by our group [66, 116],
quantum walks were experimentally realized by several other groups using different physical systems,
including trapped ions [287, 288] and photons [289-291].

In our experimental apparatus, we realize the coin operation by using microwave radiation that
resonantly couples the two hyperfine states (see sec. 2.3.3). This allows us to achieve any arbitrary
unitary transformation of the pseudo spin-1/2 with the coin operation. The most frequently used coin,
however, is the Hadamard coin, which produces an equal superposition of the two spin states (coin angle
equal to r/2). The spin-dependent shift operation is realized by employing our PS optical lattice, which
moves the atom by one site rightward or leftward depending on the internal state. After applying both
operations the trajectory of an atom will thus be split, giving rise to a beam splitter operation of a single
atom interferometer [209].

After iteratively repeating the coin and shift operation, the matter wave spreads over multiple tra-
jectories in position space, as illustrated in figure 3.12(b), producing a complex multi-path interference
effect. The resulting probability distribution measured after a twenty-step quantum walk is shown in
figure 3.13, where originally the walker was prepared in site x = 0 and in the |T) state. The prominent
peak on the left-hand side provides signature of multi-path interference. Furthermore, the quantum walk
spreads ballistically with the number of time steps # in contrast to a classic random walk, which spreads
diffusively with a Gaussian distribution of width +/n. Decoherence reduces the interference contrast,
turning the quantum walk into a classical random walk. The number of coherent steps is primarily limited
by decoherence arising from light shifts [189], which is expected to vanish with the atoms cooled to the
three-dimensional ground state of the optical lattice (see section 2.5).

3.4.2 Outlook: Speeding It up with Optimal Control

All experimental results presented in this thesis, which make use of coherent transport operations (e.g. the
quantum walk presented in figure 3.13), were obtained using the bang-bang technique [272]. However,
from an experimental point of view it would be desirable to improve upon two characteristics of this
technique: (1) While the transport operation using the bang-bang technique is significantly faster than the
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Figure 3.13: Discrete-time quantum walks of single cesium atoms. Probability distribution of single atoms after
20-step quantum walks. Bars with confidence intervals are the experimental data, short horizontal lines are the
theoretical prediction with about 5% coherence loss per step [189]. Dashed line is the prediction for a random walk
(no coherence). This figure is originally published in Robens et al. [4]

adiabatic transport operations we discussed in section 3.3.1 (20 us < 1 ms), any further reduction of the
transport time directly allows us to increase the number of coherent operations (e.g. the number of steps
in a quantum walks) in an experimental sequence. (2) The bang-bang technique is particularly sensitive
to small changes in the trap depth [53], which, in turn, requires us to frequently readjust the transport
operation. With the ever increasing complexity of prospective experiments, it is therefore beneficial if the
transport operation would be intrinsically insensitive to deviations of experimental parameters.

A promising candidate to further improve the transport operation performance is optimal control,
namely an open-loop approach, where external parameters are optimally shaped in order to steer the
dynamics of the system in a predetermined way [292]. Since the dynamics of our system are well
described by the Schrédinger equation, and furthermore, the response of our control parameters is
experimentally accessible (see sec. 3.2), we can directly resort to methods from classical control the-
ory [292]. Additionally, since we are optimizing a quantum system we specifically use the interference
of several paths in the Hilbert space, which leads to excitation free transport, faster than what could
be achievable with classical physics. Over the recent years several theoretical investigations have been
carried out to optimize the transport of quantum particles, including optimal control methods [293],
inverse engineering techniques based on Lewis-Riesenfeld invariants [294, 295], and via the spatial
adiabatic passage technique [296—-298] — the analog of the stimulated Raman adiabatic passage [299].
However, so far it is unclear whether these techniques lead to the fastest possible transport operation.

Antonio Negretti — with experimental support from our side — carried out an optimization [6], making
use of the chopped random basis (CRAB) optimization algorithm [300], which aimed to improve the
transport operations of neutral atoms the dynamics of which are controlled by our PS optical lattice.
The CRAB optimization uses a truncated basis of randomized functions for the control parameters to
reduce the dimensionality of the search space. In our case, we utilize the CRAB algorithm to optimize
the overlap of the atomic wave function before and after the transport operation by adjusting the optical
phases ¢1/; (see eq. (3.3)) and the potential depths U(T) m (see eqns. (3.1)-(3.2)) of the PS optical lattice
during the transport. The algorithm directly incorporates the finite response of all parameters using the
response functions we obtained in sec. 3.2. Further details on the optimization can be found in Negretti
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Figure 3.14: (a) Optimal phases as a function of time for a single lattice site transport. The red line corresponds to
¢1, whereas the blue line to ¢;. (b) Optimal lattice depths as a function of time for a single lattice site transport.
The red line corresponds to U ? , whereas the blue line to U?. The optimal transport time for this operation amounts
to Topr =~ 8.4 us. This figure is originally published in Negretti et al. [6]

et al. [6].

Figure 3.14 displays the optimized optical phases ¢1/; and potential depths U(T)/ L for a transport
operation, which shifts the two spin dependent potentials by one lattice site apart. The small differences
in the curves for the o* and o~ lattice arise from the residual coupling crosstalk of the ||) state, which
we discussed in section 2.1.3. The entire operation requires only 8.4 us — more than a factor of two faster
than the bang-bang like transport we employed so far. However, this is merely the starting point of what
can be achieved with optimal control transport ramps: for example, we can also employ the algorithm to
optimize transport operations which coherently delocalize the atomic wave function over several tens
— or even hundreds — of lattice sites. At the current state, optimal control theory predicts that we can
achieve excitation free transport over 10 lattice sites in 20 us [6]. Such transport long distance transport
operations make it feasible to realize a single atom interferometer with a macroscopic splitting of up to
1 mm.
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CHAPTER 4

Ideal Negative Measurements in Quantum Walks
Test Single-Atom Trajectories

HE superposition principle is one of the pillars of quantum theory and it also constitutes a
central resource in quantum metrology [301], quantum communication technologies [302],
and quantum information processing [15]. Yet the same principle has been the source of
heated discussions since the inception of quantum theory [303-313]: the central question of the
long-standing debate is about the physical origin of the observed “definiteness” of macroscopic physical
objects. In fact, while it is widely accepted that microscopic systems can live in superposition states,
the fact that in a physical apparatus individual measurements always yield single, definite outcomes
has so far eluded a comprehensive explanation [31]. For instance, the macroscopic apparatus of a
Stern-Gerlach experiment always measures a definite orientation of the electron’s spin, although the
electron is, according to quantum mechanics, in a superposition of both spin orientations. To reconcile
the definiteness of measurements with the Schrodinger equation, two plausible explanations have been
advanced [33]: (1) Quantum superposition applies at all scales, even for macroscopic objects, and
environment-induced decoherence is responsible for the emergence of so-called pointer states, to which
the wavefunction is reduced (“‘collapses’”) with probabilities determined by Born’s rule. (2) There exists
a deeper, underlying theory which gives rise to coherent quantum evolution at the micro scale and yet
well-defined trajectories at the macroscopic level, independently of the environment’s influence. This
second explanation advocates a “macrorealistic” description of nature as it implies that macroscopic
physical objects follow classical trajectories.

In order to put the latter idea of “macrorealism” to the experimental test, Leggett and Garg (LG)
derived a set of inequalities bounding the linear combinations of two-time correlation measurements [29].
In recent years, violation of LG inequalities has been shown in a wide range of physical systems spanning
from superconducting qubits [314, 315] to photons [316-319], nitrogen-vacancy centers in diamond [320],
nuclear spins [321], and phosphorus impurities in silicon [322]. However, these experiments are confined
to test superposition states in a simple qubit system, which exhibits Rabi oscillations — far away from
Leggett and Garg’s original intention to probe macroscopic quantum superpositions.

Performing LG tests in more complex systems including also mechanical degrees of freedom —
mechanical superposition states are the essential component of most macrorealistic models [323-325] —
constitutes a major challenge: not only quantum superposition states become very fragile, but also new
experimental methods must be developed to realize so-called ‘ideal negative measurements’ in these
systems. Ideal negative measurements — namely, the ability to measure the physical object yet avoiding
any direct interaction with it — are a prerequisite for any rigorous LG test, as without it, violations can
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simply be attributed to an unwitting invasiveness on behalf of the experimenter, rather than to the absence
of a realistic description [326]. Despite their importance, a rigorous implementation of this type of
measurement has been demonstrated in just one of the many LG tests reported in the literature [322].

We will see in the following section, that we can achieve a 6 o (standard deviation) violation of
LG inequality for a cesium atom performing a quantum walk (see sec. 3.4.1), in which the atom is
coherently transported along a line in discrete steps in space and time. We obtain the violation by
measuring the correlation between the atom’s positions at successive times with measurements of the
ideal negative type, which a devout realist would perceive as non-invasive. The capability of PS optical
lattice, allowing state-dependent displacements of atoms over arbitrary large distances enables us to
remove atoms depending on their position state and to realize, thus, a negative position measurement on
the unshifted atoms.

Criteria for the assessment of the degree of macroscopicity of superposition states have long been
discussed in the literature [327, 328]. There is a general agreement that the macroscopicity of a mechanical
system increases with heavier masses and larger spatial separations of the superposition states. Although
the atomic wavefunction of the cesium atom in our experiment spreads, at most, over a distance of 5
sites (2 um), our results set the stage for future experiments testing the LG inequalities with objects of
thousands of proton masses split over macroscopic distances (for a review see [329]). Furthermore, we
remark that this work extends the experimental study of LG violations to quantum transport systems
[330] with dynamics far richer than those of the hitherto-considered qubit systems.

4.1 The Leggett-Garg Inequality

The reconstructed probability distribution of a quantum walk (e.g. fig. 3.4.1) can be precisely explained
with quantum mechanics in terms of interference of all trajectories that the particle is allowed to follow
while moving from the initial to the final point. The agreement with experimental observations, in the
spirit of Francis Bacon’s inductive thinking, serves as an important piece of validation of quantum theory
itself. However, according to Karl Popper’s point of view, one must acknowledge that the remarkable
fit between observations and quantum theory does not itself constitute a ‘falsification’ of the ‘other’
hypothesis — that an underlying probability distribution could conceivably describe, at all times, the
position and the spin of the atom as elements of objective reality. Here is where the LG inequality
becomes important, as it subjects the idea of realism to a rigorous, objective test by looking for violation
of

K={Q(2)Q(11)) +{Q(13)Q(12)) = (Q(13)Q(11)) < 1, 4.1

where Q(#;) are real values with |Q(#;)] < 1 assigned to the outcomes of a measurement performed at
time #; with ¢; < t;+1, and where (. ..) denotes the average over many repetitions of the experiment. The
derivation of this inequality essentially rests on two assumptions [331]: (A1) realism, as discussed above;
and (A2) non-invasive measurability, which asserts the possibility to measure the system without affecting
its future evolution. Both these assumptions are implicit in a realistic view of nature [29]; but of course,
quantum mechanics holds to neither [332, 333]. However, to be a valid test of the LG inequality, it is
sufficient to persuade whom already believes in (A1) that the measurement scheme used in the experiment
complies with (A2). Otherwise, violations of equation (4.1) may be attributed to a trivial invasivity of
the measurement [326]. To ensure this, Leggett and Garg put forward the concept of “ideal negative
measurements” [29], which are well illustrated by the following example: Imagine that a physical object,
like the atom, can be found in only two positions, x = +1, and that we check the presence of the object at
x = +1 without looking at x = —1. From the point of view of a realist, the absence of the object at x = +1
necessarily implies that x = —1 without ever having influenced the object during the measurement. By
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Figure 4.1: Ideal negative measurements test the non-classicality of quantum walks. (a) Schematic representation
of a four-step quantum walk containing 16 possible trajectories, which according to quantum mechanics the cesium
atom simultaneously follows. Conversely, upholders of realism believe that in each experiment the atom follows a
definite trajectory connecting the initial and final point, e.g., the dashed line shown in figure. The outcomes +1 of
QO(t;) measurements are indicated with circles, where Q(#;) is identified with the initial state preparation, whereas
Q(t,) and Q(t3) are related to position measurements. For instance, measurements at times #; and 73 yields the
correlation function {(Q(#3)Q(t1)). (b) To measure the correlation function (Q(t3)Q(t,)), we use at time #, an ideal
negative measurement scheme, which ensures the non-invasiveness of Q(#,): On condition that only atoms in |
state are transported at ¢, far away to the right, atoms in T continue afterwards their walk undisturbed. In the case
QO(t;) measurement has not removed the atom, measuring at #3 the atom’s position yields Q(#3) conditioned to the
state (T, x = —1) at #,. Likewise, we obtain Q(#3) conditioned to (|, x = +1) by transporting at #, the atom in | far
away to the left (not shown in the figure). This figure is originally published in Robens et al. [1]

repeating this measurement many times, probing the object either at x = +1 or x = —1 and discarding all
measurements that directly reveal the object, we can thus measure correlations functions like {(Q(#3)Q(#2))
without having ever meddled with the object itself at time #,. Hence, any violation of equation (4.1) that
arises from ideal negative measurements must imply a violation of the realist principles (A1) or (A2) — or
both.

4.2 Quantum Walks Falsify Classical Trajectories

We base our experiment on a four-step quantum walk probed at times t; = 0, = 1, and 13 = 4
steps, as displayed in the panels of Figure 4.1, where each step lasts around 26 ps. The three different
measurements are defined as follows. We equate the first measurement Q(#1) with the state preparation in
(T, x = 0): fluorescence imaging first determines the initial position of the atom with single site resolution
(see sec. 2.2), while sideband cooling slows the atom’s motion to the lowest longitudinal vibrational
state and concurrently polarizes the atom in T state (see sec. 2.5.2). The translational symmetry of the
optical standing wave allows us to safely label the initial position with x = 0. We designate Q(t) = 1.
At time #,, we measure the atoms’ state, which is restricted to two possibilities, either (T,x = —1) or
({,x = +1), and we assign to this measurement the value Q(#;) = 1 independently of the atom’s internal
state or position. The assignment of Q(#,) to a constant value is, in fact, one of the legitimate choices
that are consistent with the condition |Q(#;)| < 1 in the derivation of LG inequalities [331]. Finally, Q(#3)
measures the atom’s position at the end of the walk and returns the value —1 for x < 0 and value +1 for
x > 0. According to quantum mechanics, with this definition of Q(#;) we expect a violation of the LG
inequality yielding K = 1.5 (see sec. 4.2.1).
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Quantum mechanics also shows that other designations of Q(#;) are possible to produce a violation
of equation (4.1), for instance, by assigning the measurement outcome (|, x = +1) to 1 and (T,x = —1)
to a certain value ¢ with |£] < 1. While previous experiments [314—-322] have adopted a dichotomic
designations of Q(#,) (analogous to set here & = —1), we intentionally dropped such an extra condition
to permit larger violations of the LG inequality as fewer constraints are imposed (cf. eq. (4.3) and
eq. (4.4) in sec. 4.2.1). Such a constant designation especially reveals that the essential requisite to violate
equation (4.1) is that the particle is measured at #,, even though the result of the measurement itself is
then discarded.

Because the measurement Q(#;) is a state preparation, and because we are not concerned about the
atom’s evolution after time #3, only the measurement Q(#,) must be performed non-invasively. Since
we are not allowed to directly image the atom at time #, because it would be invasive, we adopt an
ideal negative measurement strategy that hinges on state-selective removal of atoms. This measurement
scheme draws direct inspiration from the experimental realization of interaction-free measurements of
the state of single photons [334]. The measurement scheme, which is illustrated in figure 4.1(b), proceeds
as follows: if we want to non-invasively detect the atom’s presence, say, in x = —1, we remove the atoms
in the state (|, x = +1) by transporting them far to the right, whereas we leave the atoms in the state
(T, x = =1) untouched. Providing this shift (set here to 5 sites) is larger than the distance covered by the
atom between t, and 3, the atom’s position at the later time #3 allows us to unequivocally mark the shifted
atoms (which though remain trapped in the lattice potential) as effectively removed with confidence better
than 99 %. Hence, the state-selective removal of atoms provides information about the atom’s position at
time #, and, at the same time, postselects those measurements that are carried out non-invasively.

In order to measure the LG correlation function, we note that with our assignment of Q(#;), the correla-
tion function K = (Q(%)Q(t))) is trivially equal to one. Furthermore, we have K13 = (Q(t3)Q(t;)) =
(Q(t3)), which quantifies the asymmetry of the final position distribution. Figure 4.2(a) shows the meas-
ured probability distribution of a four-step quantum walk with fair coin toss (6 = x/2). The distribution is
characterized by a pronounced skew to the left, which translates into a non-zero value K13 = —0.57 + 0.05.
Although this asymmetry itself is often interpreted as a hallmark of “quantumness” [66, 287], we would
rather eschew similar premature conclusions here. Using the law of total probability under assumptions
(A1) and (A2), the final correlation function may be obtained as

Koz = > Pt x)(Q(t3)s, (4.2)

x==%1

where P(f; x) is the probability of finding the atom in x at #,, and (. . .), is the average over the distribution
conditioned on a negative detection of the atom in x at #,. Hence, we perform two separate experiments to
measure K33, one for each term of the sum in equation (4.2), as shown in figure 4.2(c). After rejecting all
measurements during which atoms have provably been perturbed, we find P(t;; x = —1) = 0.506 = 0.026
and P(ty;x = +1) = 0.494 £ 0.026. Averaging Q(t3) with the two conditioned distributions yields
a value Kp3 = —0.14 = 0.05 close to zero. Taken together, the three correlation functions yield K =
1.435 + 0.074 > 1, which violates the LG inequality by about 6 o~ (standard deviation). The uncertainty
is estimated to be purely statistical (see appx. sec. A).

4.2.1 Quantum Mechanical Prediction

A quantum mechanical calculation shows that, among the possible designations of Q(¢;), the maximal
violation of LG inequality is obtained by associating the measurements’ results to the extremal values
in the permitted range, that is, either +1 or —1. Other designations, e.g. O(#3) = x/2, would lead to a
smaller upper bound for K.
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Figure 4.2: Violation of Leggett-Garg inequality probing a four-step quantum walk. The spatial distribution of
single atoms is reconstructed by measuring their positions at time #3: (a) If we do not observe which trajectory
the atom has taken at #,, the distribution exhibits a pronounced peak on the left hand side. However, when we
conclude from an ideal negative result whether the atom at time #, was in (b) x = —1 or (¢) x = 1, we obtain two
distributions which resemble the mirror image of one other. The events in which the atom’s position has been
affected by Q(#;) measurement are recognized through the larger displacement and, thus, rejected. Because the
overall number of probed atoms, 404, is the same in (b) and (c), the retained events can be added together to
produce the position distribution at #3 conditioned on having measured the position at #,. The sum distribution (not
shown) is symmetric and differs strongly from the asymmetric distribution in (a). The vertical error bars represent
68 % Clopper-Pearson confidence intervals. (d) Leggett-Garg correlation measurement witnessing the degree of
quantumness. Maximum violation occurs for a fair coin (8 = x/2), while no violation occurs for classical transport
at 8 = 0 and 6 = . The solid lines is the theoretical prediction based on quantum mechanics of the LG correlation
function K for a decoherence free quantum walk (upper curve) and for a quantum walk with 10 % decoherence
per step (lower curve). The vertical error bars represent 1 o uncertainty, while the horizontal error bars denotes a
systematic uncertainty on the coin angle. This figure is originally published in Robens et al. [1]

With our prescription of Q(#;), we find for a four-step quantum walk an analytic expression of K as a
function of the coin angle 6,

K= 1_16 [19 — 4 cos(20) + cos(46)], 4.3)

which is the curve plotted as the upper line in figure 4.2. Alternatively, with a dichotomic assignment of
QO(t;) equal to —1 for (T, x = —1) and to +1 for (|, x = +1), we obtain

K = % [33 — 4 cos(8) — 4 cos(26) + 4 cos(36) + 3 cos(40)], “4.4)

which reaches the maximum value of approximately 1.31, in contrast to 1.5 corresponding to equa-
tion (4.3).
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4.3 Measuring the Quantumness of a Quantum Walk

Besides the fundamental interest, LG inequalities also find application in quantifying the degree of
“quantumness” of a system. This requires, however, that we abandon the standpoint of realists and, from
now on, embrace quantum mechanics instead. Intuitively, the LG correlation function K may serve as an
indicator, say a witness, of the amount of superposition involved in the system’s dynamics. This idea of
‘quantum witnesses’ has recently been proposed as a method to discern quantum signatures in systems
like biological organisms [335].

Owing to our particular definition of Q(#;), which is constantly mapped to 1, we prove a direct
connection (see sec. 4.3.1) between LG inequalities and quantum witness formalism by identifying
W = |K — 1] with the first quantum witness introduced in Li et al. [335]. The deviation of W from zero
indicates the degree of “quantumness” in the system’s dynamics.

We provide demonstration of the quantum witness W in the four-step quantum walk by testing different
types of coins, which differ in the probability of tails p = cos?(/2) and heads ¢ = 1 — p. For instance,
p = g = 1/2 corresponds to the fair coin’s situation, which has hitherto been considered. As displayed in
Figure 4.2(d), we measure the LG correlation function K for different values of the coin angle 8, which is
tuned by setting the duration of the coin’s microwave pulse. The violation is maximal for 8 = 7/2 (fair
coin), when the coin maximally splits the walker’s state at each step in an equal superposition of states.
Instead, the violation vanishes for 8 = 0 and 6 = &, when the walk reduces to classic transport with no
superposition involved.

4.3.1 Quantum Witness

The assignment Q(;) = 1, together with Q(¢;) = 1 by preparation, implies that the LG inequality (see
eq. (4.1)) can be written in general terms as

K-1= Z P(12; )(Q(13))x | =(Q(13)) < 0. 4.5)

x=+1

This inequality is but one of a family of inequalities, and K'= {Q(#2)Q(#1))—{Q(t3) Q(£2))+{Q(t3)Q(t1)) < 1
defines a similar, though independent inequality built from the same correlation terms [331]. With the
choice of Q(t;) discussed here, we find that K’ — 1 = —(K — 1). Taken together, these two inequalities
imply that W = |K — 1| = 0. The comparison with Li et al. [335] allows us to identify W as the first
quantum witness in that work.

4.4 Witnessing the Decoherence of a Quantum State

Decoherence is ubiquitous in quantum systems [309] and, if controllable, offers a tuning knob to set the
amount of “quantumness”. We now employ the LG inequality as a tool to study spin decoherence — one
of the most basic mechanisms that affect atoms trapped in optical potentials. To this end, we consider a
Ramsey in-situ interferometry experiment for the spin, with the position degree of freedom being used
only as part of the measurement scheme (see sec. 2.4.2). In this case, the lower dimensionality of the
system (spin only) allows us to better illustrate the relationship between the violation of LG inequality
and the fringe visibility of an interferogram [336, 337]. The system evolution is depicted in figure 4.3(a):
We first prepare the atom in a certain lattice site in state T (time ¢; with Q(#;) = +1). We then apply a
microwave 71/2 pulse. In particular, when measuring the correlation term K>3, the internal state at time #,
is non-invasively detected with the same ideal negative measurement scheme described above, except
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Figure 4.3: Leggett-Garg correlation measurement witnessing quantum-to-classical transition: (a) Evolution of
the spin degree of freedom on the Bloch sphere during the Ramsey sequence detailed in the text (double arrows
pointing in opposite directions indicate two equally probable spin orientations). (b) We measure a violation of LG
inequality for an increasing amount of decoherence, which is controlled by varying the delay time between the two
m/2 pulses. The upper and lower curve represent the theoretical prediction for coherence times of 75 us and 200 us,
respectively, accounting solely for decoherence due to differential scalar light shift. Referring to the point indicated
with a solid circle in (b): (c) distribution of atoms’ positions at 73 in the case atoms in | state are shifted apart at
time 7, (rejected atoms are not shown). (d) The same but with atoms in T shifted apart. (e) Distribution of atoms’
positions at #3 with Q(#,) measurement omitted. Atoms occur at x = —1.5 because of spin decoherence. Error bars
are defined as in figure 4.2. This figure is originally published in Robens et al. [5]

that here atoms are state-dependently transported away by 7 lattice sites. As done for quantum walks, we
also map both values of the detected spin to the value Q(#;) = +1. The dynamics of the atom is resumed
with a second microwave 7/2 pulse, after which the atom is shifted depending on the spin state to two
separate positions in the lattice, 3 sites apart. Finally, the atom’s position is detected and observable
QO(t3) obtained: Q(t3) = +1 for x > 0 and Q(#3) = —1 for x < 0. Mapping the spin information onto the
positions enables us to detect both internal states for every probed atom, thus eliminating the shortcoming
of push-out detection typical of single atom interferometers (see sec. 3.3.1).

To investigate the effect of spin decoherence, we record the LG correlation function K while varying
the time elapsed between the two Ramsey 7/2 pulses. The results are shown in figure 4.3(b). For a
minimum delay time of 5 us, we record a value of K = 1.958 + 0.033, which violates the LG inequality
by 21 o (standard deviation). While this point lies very close to the decoherence-free prediction of K = 2,
the recorded value of K decreases at longer delay times (i.e., larger decoherence) until it reaches the
classical limit of 1.

The analysis of the experimental results help us understand the relation between K and the interference
contrast C of the corresponding Ramsey interferometer, thus providing intuition about the quantum-to-
classical transition of the LG correlation measurement. The measurement of K33 yields a vanishing value
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independent of the delay time. In fact, according to quantum mechanics, the negative measurement Q(z)
provides complete which-way information and precludes interference at time 3, see figure 4.3(c,d). As a
result, K = 1 + K>3 — K3 is essentially determined only by the measurement of K13, shown in figure 4.3e.
Because this term is equal to the contrast C', the LG correlation function K of this experiment can be
recast in the suggestive form K = 1 + C. This insight allows us to compare the experimental points in
figure 4.3(b) with the fringes’ visibility that is predicted for our system in the presence of dephasing due
to differential scalar light shift in an optical standing wave [189], which we discussed in sec. 2.4.2.

4.5 Macroscopicity Measure and the Venalty

Our violation of the LG inequality proves that the concept of a well-defined, classical trajectory is
incompatible with the results obtained in a quantum walk experiment. Yet, the concept of well-defined
trajectories in position space can, in part, still be rescued providing one renounces locality. An example
is provided by Bohmian mechanics, the predictions of which are equivalent to those of non-relativistic
quantum mechanics [338]. In this interpretation of quantum theory, physical objects follow precise
trajectories, which are guided by the universe’s pilot wavefunction, that is, by a physical entity constituting
a non-local hidden variable. It is therefore clear that Bohmian mechanics is not in contradiction with our
findings since, from that point of view, assumption (A2) is not fulfilled.

Recently, a minimal macrorealistic extension of (non-relativistic) quantum mechanics has been put
forward under general assumptions [328], which proposes a universal objective measure of macroscopicity
accounting for both the mass and spatial separation of the superposition states. Within this model, we
estimate a measure of macroscopicity for our experiment (see sec. 4.5) that lies in the range of typical
cold atom experiments [329] — whether those be performed with thermal atoms or with a Bose-Einstein
condensate. We remark, moreover, that the macroscopicity of our experiment is, coincidentally, on the
same order of magnitude of experiments testing superpositions of macroscopic persisting currents [314,
329, 339]. In spite of the yet microscopic nature of the present LG tests, our result gives a conceptual
demonstration that non-invasive measurement techniques can be applied to test the LG inequality, e.g., in
double-slit experiments with genuinely massive particles by alternatively blocking at time #, either one
of the two slits.

Unlike the test of Bell inequalities, where a loophole-free violation seems in reach [340], LG experi-
ments remain susceptible to the so-called clumsiness loophole — even employing negative measurements.
This loophole refers to the impossibility on behalf of the experimenter to exclude an invasivity of the
measurements. Hence, it is appropriate to comment on the three main instances which can hinder the
fulfillment of (A2) in our experimental set-up. (1) In the measurement of Q(#,), the state-dependent shift
could cause vibrational excitations to the unshifted atoms. To avoid this problem, we deliberately set the
shift duration to a time of 200 us, which is much longer than than the period of the longitudinal motion
of circa 10 us. We measured the fraction of atoms that are left in the ground state by the shift process for
both shifted and unshifted internal states (see sec. 3.3.1). In both cases, we obtained a fraction > 99 %,
which is consistent with the precision of the initial preparation, thus confirming that no excitation is
produced. The concept of venality, which has been introduced in Briggs et al. [322] to account for
non-ideal negative measurements, can be applied to this effect as well, which is discussed in section 4.5.
However, four our experimental apparatus the upper limit imposed on K is only slightly changed. (2) The
duration of measurement Q(#;) is comparable to the spin coherence time. In principle, an equal delay

! The contrast of a Ramsey fringe, which is centered in the interval [0, 1] is given by C = 2p; — 1 (see also sec. 2.4.2), where
Py is the maximum probability of detecting |T). Since the two Ramsey 7/2 pulses are experimentally set to have the same
phase, the correlation function reads Ki3 = (Q(t3)) = py —(1 = py) =C

94



4.5 Macroscopicity Measure and the Venalty

time should also be included in the sequence when no measurement is performed at #,. However, we
have seen in section 4.4, using a Ramsey interferometer — instead of a quantum walk — produces also
a violation of the LG inequality. (3) At time ¢;, the motion of the atom in the transverse direction is
prepared according to a Boltzmann-like distribution, which extends over the first hundred vibrational
states. A statistical mixture is not a problem per se, providing the statistical properties are maintained
constant. A realist, though, could raise the objection that the experiment “knows” which correlation term,
either K3 or K>3, is being measured and exploits this information to prepare the transverse motion ad
hoc in a way to counterfeit the violation of the LG inequality (cf. the hypothesis of so-called induction
discussed by Leggett [327]). More generally, the same argument can also be invoked in the case of any
hidden variable n, which, from an epistemological point of view, is tantamount to the transverse motion
of the atoms. Eventually, to blunt this criticism, one could base the choice which correlation term to
measure upon random events that are uncorrelated from the initial preparation [341, 342].

There is one further aspect of this LG test that must be emphasized, namely that we test single,
individual copies of the system by probing one Cesium atom at a time. Prior experiments in NMR sys-
tems [321, 322] took an alternative approach by substituting individual measurements with measurements
on a large ensemble of identical systems instead. Our approach a priori eliminates the need for the extra
assumption that multiple copies of the system — even when positioned in near proximity — do not interact
with each other. However plausible this hypothesis is in NMR systems, ignoring it would allow a realist
to argue that the several copies of the system have interacted with each other — in particular with those
copies that have been invasively measured, thus invalidating hypothesis (A2). In addition, employing
ensembles instead of individual systems can lead to controversial interpretations, as is illustrated by
the following examples. A wave-like analogue of quantum walks based on coherent electromagnetic
waves (e.g. a laser beam [290]) is expected to produce a violation of the LG inequality similar to the
one obtained with individual photons. In a similar way, even acoustic or surface waves could be used
to measure a violation. However, it is certainly debatable whether an experiment hinging on Maxwell
equations or mechanical waves can indeed rule out realism. In fact, to reach this conclusion, a realist
should be first persuaded that light is composed of photons and waves of phonons.

In conclusion, our experiment gives a rigorous, quantitative demonstration of the non-classicality of a
massive-particle quantum walk. The experiment also sets the basis for a test of LG inequality probing the
positional degree of freedom over macroscopic distances. The interaction-free detection method of the
atom’s position can well be adapted to other systems like matter wave interferometers with large spatial
splitting [343—345]. The ten-dimensional Hilbert space (5 lattice sites with 2 internal states each) of
this LG test constitutes a significant advance beyond the simple two-level system, which has been so
far investigated. Moreover, the multidimensionality of the Hilbert space [346] can be used in the future
to approach the algebraic limit of the correlation function K, which is equal to 3. Finally, we should
remark the illustrative value of this violation of the LG inequality, which puts the particle’s trajectories in
position space at the center stage.

Macroscopicity Measure

Nimmrichter et al. [328] have suggested a universal, objective measure u that quantifies the amount
of macroscopicity of a mechanical superposition state. In the proposed model, i sets a lower limit for
the time (expressed in logarithmic scale) during which an electron — chosen as the reference particle
— behaves like a “wave” delocalized over distances larger than a certain critical classicalization length
scale ¢, which represents a phenomenological parameter. The length scale ¢ is defined in the model such
that quantum superpositions of paths separated by less than ¢ preserve their coherence. We estimate
for our experiment u = log,o(T Més /mg) ~ 6.8 for values of ¢ shorter than the maximal separation,
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2 um, reached during the 4-step quantum walk. Here, Mc, and m. denote the masses of the cesium atom
and of an electron, respectively, and T represents the overall duration of the quantum walk. For values
of ¢ larger than 2 um, the measure u as a function of ¢ itself behaves, up to an additive constant, as
—2log(¢/2 pm) [328].

Venalty

Knee et al. [322] have introduced the concept of venality ¢ to quantify how often a non-ideal negative
measurement, i.e. a measurement that could potentially violate (A2), has been performed. In our
experiment, it occurs with a relative frequency of 1 % (estimated as the upper limit) that vibrational
excitations of the unshifted atoms are produced during the measurement of Q(#;) (see sec. 3.3.1). In
addition, spontaneous flips (see sec. 2.4.1) of the internal state happening during the 200 us-long Q(t,)
measurement could also invalidate hypothesis (A2). This second process, however, occurs with an even
smaller relative frequency of circa 0.2 %. Hence, we quantify the relative frequency of non-ideal negative
measurements with { = 1 %.

Along the lines of Knee et al. [322], the correlation function K measured in our experiment can be
decomposedas K = 1+ (1 - ¢ )Ki;;eal +C K;;’mlpt — Kj3, where Kiz‘;eal and K;g“up " denote the correlation
function (Q(#3)Q(t;)) which has been measured with an ideal negative measurement Q(#;) and with a
corrupted one, respectively. Taking into account the venality ¢, the Leggett-Garg inequality, which is
derived from (A1) and (A2), reads K < 1 + ¢ (Kggm”)t — K13). From this we obtain a new upper bound for
K <1+2¢ =1.02, which is only slightly displaced from the ideal case of 1.
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CHAPTER 5

Testing the Quantumness of Two-Atom
Trajectories

HE capability to control the position of individual cesium atoms with high fidelity (see chap. 3)
combined with 3D ground state cooling (see sec. 2.5.2) gives us a versatile tool to probe
quantum interference effects of two-atom trajectories. In this chapter we will discuss our
recent results on collisional losses due to inelastic collisions occurring at high two-atom

densities (see sec. 5.1) and demonstrate a Hong-Ou-Mandel interference with massive particles (see
chap. 5.2). The former represents a first step in the direction of measuring atomic properties such as the
scattering length between different spin combinations using exactly two atoms, whereas the latter is of
particular interest since our two-particle interference demonstrates the fundamental building block e.g. to
realize controlled two-atom phase gates [347] or to study correlated discrete-time quantum walks with
indistinguishable particles [348]. Continuous-time analogues of DTQWs with correlated boson particles
have similarly been observed [61, 349].

Our experimental apparatus embodies an ideal testing environment to study the Bose statistics of
exactly two particles. Bose statistics provides particles a “nonclassical” way to interfere due to the
exchange symmetry, which reflects the fact that quantum systems are symmetric by exchange of identical
particles. This symmetry is at the heart of the famous Hong-Ou-Mandel experiment [30], in which two
indistinguishable photons (with identical polarization and transverse mode) impinging simultaneously
upon a beam splitter emerge in an entangled quantum state. Both photons exit from the beam splitter
either through one or the other output port, but not from separate ones. The analysis, provided in
section 5.2.1, reveals that our microwave Hong-Ou-Mandel experiment with neutral atoms achieves a
signature of the two-particle interference with a statistical significance of 4 o (standard deviation).

5.1 Probing Two-Atom Collisions at High Densities

Shortly after the first observation of a BEC in an ultracold gas of rubidium atoms by Anderson et
al. [350] and of sodium atoms by Davis et al. [351], researchers started to investigate whether a BEC
could be achieved with cesium atoms. However, the first attempts resulted unsuccessful due to inelastic
collisions [201] and it took a few more years before the first BEC of cesium could be realized by adjusting
the interaction through a Feshbach resonance [352]. During this period several groups investigated the
collisional properties of cesium trapped in a magneto-optical trap [282]. For example, it was demonstrated
that a dense cloud of cesium atoms undergoes hyperfine state-changing collisions on a time scale of a
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Figure 5.1: Probing two-atom collisions in state-dependent optical lattices. (a) Two atoms are initially placed at a
relative distance of 20 sites and cooled to the motional ground state. Using an addressing magnetic field gradient,
one of the two atoms has its spin flipped by a microwave r pulse (see sec. 2.3.4). (b) Both atoms are transported
to the same lattice site by a single adiabatic spin-dependent shift operation lasting circa 1 ms (see sec. 3.3.1).
Subsequently the two atoms are again separated. (c) Based on the model in equation (5.1), we determine the
probability P.q; for two atoms to be lost due to a hyperfine changing collision. By exciting selectively the atom in
IT) (see sec. 5.1.1), we observe a reduced probability of collisional losses. This figure is originally published in
Robens et al. [4]

minute for densities n ~ 10'9 cm™ [201]. Our experimental apparatus enables us to realize densities six
orders of magnitude higher by transporting two 3D-cooled atoms into the same lattice site according
to the scheme illustrated in figure 5.1(a). In contrast to the pair production measurements discussed
in section 3.3.4 where two thermal atoms were imaged in the same lattice site, we now bring two 3D
vibrational ground state cooled particles together and let them interact for a controllable amount of time.
After the interaction time we split the particles again to observe whether one or both of them were lost as
a result of an inelastic collision event by recording a fluorescence image.

The energy released in the inelastic collision is on the order of AE = kg X 400 mK [353], which is
more than three orders of magnitude larger than the depth of the optical potential. Hence, we expect to
loose both atoms in the case where they undergo a hyperfine state-changing collision. By recording the
occurrences where both, one, or no atom remains in the optical lattice after a variable interaction time,
we can extract the probability of inelastic collisional losses Pcq using a simple model:

0 atom survives = S2 Peoi + (1 — S)?
Probability that 1 atom survives = 25(1 - §) (5.1)
2 atoms survive = S%(1 = Peoir)

where § is the uncorrelated probability for a single atom to remain trapped in the optical lattice during
the experimental sequence in the absence of collisions. Independent measurements show that the
survival probability S amounts to S ~ 91%, which is mainly limited by technical reasons (timing of the
experimental sequence) and additional losses experienced due to transverse cooling. Experiments with
tighter transverse confinement are expected to reach single-atom survival probabilities close to 99 %.
These preliminary results already exhibit losses detectable for interaction times on the ms scale, shown
by the blue squares in figure 5.1(c). We further verify that the inelastic collision probability P depends
on the two-atom density. For that purpose, we excite the atom in |T) with a spin-dependent shaking of
the o* optical lattice (see sec. 5.1.1), which increases the volume of the atom’s wave function. The
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Figure 5.2: (a) Linear phase ramps employed to create state dependent vibrational excitations with different
maximal phase differences (blue: 10°, green: 15°, red: 20°). (b) Ratio of the cooling and heating sideband
transition (see sec. 2.5.2) obtained by performing longitudinal microwave sideband spectroscopy after shaking the
o polarized optical lattice using the linear phase ramps depicted in (a).

reduced probability of collisional losses in this case is shown by the red circle points in figure 5.1(c).
In the following section we will briefly discuss how to create spin-dependent excitations with our
polarization-synthesized optical lattice.

5.1.1 State-Dependent Vibrational Excitations

In chapter 3 we spend considerable effort on ensuring and verifying that our transport operations do
not lead to accidental longitudinal or transverse vibrational excitations (see sec. 3.3.1). Nevertheless,
deliberately causing vibrational excitations is an interesting tool to fine-tune the volume of the atom’s
wave function, as we have seen in the preceding section. Furthermore, this technique can also be of use to
controllably make two indistinguishable atoms distinguishable again, which is an interesting perspective
for the Hong-Ou-Mandel experiment with massive particles discussed in section 5.2.

Figure 5.2(a) depicts the phase ramps we employ in order to excite atoms in the |T) state. At first
sight they look identical to the bang-bang technique transport ramps discussed section 3.4. However,
here we specifically choose the time between the first and the second delta-like kick, such that it is
incommensurable with the longitudinal oscillation frequency of a trapped atom. Hence, after the shaking
procedure we expect atoms in |T) to be in a vibrational excited level, which can be verified by probing the
ground state population through sideband spectroscopy (see sec. 2.5.2). Figure 5.2(b) shows the ratio of
the cooling and heating sideband transition of atoms, which were prepared in the |T) state, longitudinally
cooled close to their ground state, and then excited using the corresponding shaking operation depicted
in 5.2(a). The observable revival of the cooling sideband transition attests that most of the atoms were
transferred to an excited state. Conducting additional experiments, we verified that atoms in the ||) state
remain in their vibrational ground state for all shaking operations depicted in 5.2(a) (data not shown).
An alternative and perhaps more precise method would be to employ local microwave sideband pulses
which also change the vibrational level of the atom as discussed in Belmechri et al. [252]. However,
the shaking method does not require a magnetic field gradient and, in addition, is more robust since the
delta-like kick is almost guaranteed to cause vibrational excitations.

99



Chapter 5 Testing the Quantumness of Two-Atom Trajectories

a) b) —p <

Y v

&
(EIY | Y Y - Y YY)

Figure 5.3: Side by side comparison of the historical Hong-Ou-Mandel effect (a) with photons and (b) the atomic
analog using our polarization-synthesized optical lattice. In the case of the latter, two atoms with opposite spin
states are transported into the same lattice site in an analogous fashion as in depicted in figure 5.1. A microwave
/2 pulse mixes the two indistinguishable atoms like in the beam splitter in the optical realization. A final state
dependent shift separates the two spin species. A two-particle interference leads to both atoms either emerging on
the left or right hand side. For identical atoms, no event is expected with the two atoms in distinct sites.
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5.2 Microwave Hong-Ou-Mandel Interferometer with Massive
Particles

Ultracold atoms in the vibrational ground state of an optical lattice allow us to explore fascinating
quantum-mechanical interference effects between the trajectories of two (or more) indistinguishable
neutral atoms. Quantum mechanics shows that quantum correlated states of two particles can be
produced even if particles are non-interacting. The most prominent example is provided by the Hong-
Ou-Mandel experiment [30], which is illustrated in figure 5.3(a). The quantum correlation of this
experiment results from quantum interference of two-particle trajectories, and applies in general to any
indistinguishable boson particles, including massive ones. Only recently, independent groups achieved
the first demonstration of the Hong-Ou-Mandel interference with massive particles using tunneling
between potential wells in micro potentials [17, 40] and in an atom interferometer-like experiment
with metastable helium [41]. Our experimental apparatus is well suited to implement a direct analogue
of the original HOM experiment, which is illustrated by a direct comparison in figure 5.3(a)-(b). In
the following we will first discuss the experimental sequence of our atomic HOM interferometer, then
construct a simple model to extract an estimate of the anti-bunching probability, and finally use a Monte
Carlo simulation to rigorously analyze our data.

Similar to the experimental sequence outlined in section 5.1, we initially prepare two atoms separated
by twenty lattice sites and cool them into the 3D ground state. A local microwave addressing pulse (see
sec. 2.3.4) flips the spin of the left atom (see fig. 5.4(a)), which is then transported twenty lattice sites
to the right (see sec. 3.3.1), such that both atoms coincide in the same potential well (see fig. 5.4(b)).
Instead of letting atoms interact on a millisecond time scale (see sec. 5.1), we directly apply a 4.8 us long
m/2—pulse (see sec. 2.3.3). This pulse removes the “which-way” information by transforming each atom
into an equal superposition of |T) and |]) (see fig. 5.4(c)). If both atoms are indistinguishable, interference
of the two bosons leads to the entangled NOON state which is best understood by making a small detour
through quantum optics: So far in this thesis we have exclusively dealt with the physics of single particle
trajectories, for which it was convenient to express the atomic state in terms of |T) and |]). However, in

the following, we will adopt a slightly different notation, where ai o denotes the creation operator of |T)
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Figure 5.4: (a)-(d) Experimental sequence of the atomic HOM interferometer. Please note that for illustrational
purposes only every second potential well of the optical lattice is depicted. Initially atoms are prepared 20 lattice
sites apart and cooled into the 3D ground state. (a) A local microwave addressing pulse flips the spin of the
left atom, then (b) the |]) potential is translated by 20 lattice sites. (¢) Once both atoms are in the same lattice
site, a r/2—pulse turns each atom into an equal superposition of |T) and ||). If both atoms are indistinguishable,
interference between the two bosons leads to 1/2 (ai,oa;o - aI’ 0“1, o) |0). (d) A final translation of the |T) potential
separates the two spin components. (e) Reconstructed atoms’ positions obtained from 277 repetitions of (a)-(d).
Most of the atoms are located either at lattice site O or 10, however, several experimental imperfections lead to
atoms also appearing in other locations (see discussion in text). The solid red horizontal lines are the result from a
Monte Carlo simulation, which is discussed in section 5.2.1. The error bars are estimated using the Clopper-Pearson
method. It is noteworthy that these error bars serve only as an illustration, since the Clopper-Pearson method is in
principle not suited for correlated two atom events.
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at lattice site zero, a 1.0 the creation operator ||) at lattice site zero, and |0) the vacuum state. Using this

notation we can express the action of the microwave operation in the following way:

t x/2-pulse 1 4 Py Loy i _
al g 10y ——— — (al y+a] ) —= (a] , —a] ,)10) =

\2 1.0 1.0

Where in the last step we used the indistinguishability of the particles to commute the operators a? o and

T ot
(al gal g —al gl )10y, (5.2)

N —

l o- The microwave r/2—pulse is, hence, the analogue of the balanced beamsplitter in the photonic HOM
experiment. A subsequent translatlon of the |T> potential by ten lattice sites (see fig. 5.4(d)) separates
the two spin components 2(aT 104 1T 0= l o). 0) |0). This allows us to experimentally detect the state of
the atoms. Analogous to the original detection method [30], we obtain an experimental signature of the
two-particle interference by recording the suppression of events where two atoms are detected at different
lattice sites in a fluorescence image.

So far, we have simply assumed that the two cesium atoms are indistinguishable. In terms of their
atomic structure, all cesium atoms are naturally indistinguishable, since '>3Cs is the only stable isotope
of cesium. However, according to quantum mechanics, the indistinguishability of particles is determined
by the overlap of both particles’ wave functions. As discussed in section 2.1.1, the wave functions of
atoms trapped in an optical lattice are to good approximation given by the quantum harmonic oscillator’s
eigenfunctions. Therefore, in order to be indistinguishable, both atoms need to be in the exact same 3D
vibrational state, which can be efficiently achieved by the vibrational ground state cooling introduced
in sec. 2.5.2. Hence, to first order, the indistinguishability of our atoms — and correspondingly the
probability to create the desired NOON - is given by (n3D)2 where ngD is the probability of a single
atom to be in the 3D vibrational ground state, as defined in table 2.7. Consequently, the probability to
observe an anti-bunched pair of atoms after the experimental sequence is given by

Py = % [1 ~(n gD)Z] . (5.3)

The first contribution in equation (5.3) arises from the statistical probability of distinguishable particles:
Without particles being indistinguishable we cannot commute the creation and annihilation operators in
equation (5.2). Therefore each atom has an uncorrelated probability of 50 % to be found either at lattice
site zero or ten, which results in Py;; = 50 % for fully distinguishable particles.

Thus, by experimentally observing a significantly lower anti-bunching probability, we can prove' our
capability to generate the desired entangled NOON state. Unfortunately, this probability is not directly
accessible using the experimental sequence depicted in figure 5.4. Instead, recording a fluorescence
image of the final atomic distribution allows us to extract the probabilities of observing two-, one-, or
zero-atoms in one of the target locations. Figure 5.4(e) displays the reconstructed atoms’ positions
obtained from 277 repetitions of the experimental sequence outlined in figure 5.4(a)-(d) and the relative
occurrences of the two-, one-, and zero-atom events are summarized in table 5.1. For our analysis we
include atoms which are found in the neighboring lattice sites, however, we initially disregard all events
where atoms are found in other locations (see sec. 5.2.1 for the Monte Carlo analysis).

Intuitively one might be tempted to associate the probability to observe a two atom event P, directly
with the anti-bunching probability P;;;. However — neglecting for now all experimental imperfections
besides the uncorrelated probability S of a single atom to remain trapped — P, also includes uncorrelated
loss events which do not unveil information about the HOM interference. Instead, we can extract Py

! Please note, that in contrast to chapter 4, we here argue in the spirit of Francis Bacon’s inductive thinking, where the
agreement between quantum theory and experimental observations serves as a validation of the theory itself.
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Table 5.1: Probability of zero-, one-, and two-atom events from 277 events and their corresponding anti-bunching
probability Py, obtained from the simple model given in equation (5.4).

2 atom events 1 atom events 0 atom events
Relative occurrence Poa=(19 £3)% Pia=M@8+£4)% Poya=0B3 4%
: : or 2A _ 4 1A _ 15 0A _ 10
Anti-bunching probability Py, =27 % Py =27 % Py =27 1 %

from a simple model, which incorporates the uncorrelated survival probability S and the probability
P1ac, with which we lose either one or both atoms due to light-assisted collisions, if both atoms occupied
the same lattice site (see sec. 3.3.4):

2 atoms survive = P = S2 Py/y
Probability that 1 atom survives = Pja = 2S(1 =8) + 8% (1 = PLac) (1 = Pyy)) (5.4)
0 atoms survive = Pos = (1 = $)? + % PLac (1 — Pyyy)

The light-assisted collisions branching ratio Py ac was discussed in section 3.3.4 and amounts to
Prac = (71 £5) %. To determine the uncorrelated survival probability S, we carried out an independent
measurement repeating the experimental sequence outlined in figure 5.4(a)-(d), however, omitting the
m/2—pulse. This makes the experiment purely classical, and thus both atoms will always be separated in
the fluorescence image — one at lattice site zero, the other at ten. Therefore, counting all atoms in the final
image enables us to extract the uncorrelated survival probability S, which amounts to § = (84 + 1) %.
The unusually low survival can be attributed to: (a) technical limitations which require us to keep
the atoms longer than usual in the low lattice before executing the experimental sequence depicted in
figure 5.4 and (b) during the vibrational sideband cooling some atoms escape from the trap — through
off-resonant heating sideband transitions or photon recoil excitations — before they are cooled into their
vibrational ground state. Knowing both Py ac and S together with the relative occurrences of the two-,
one-, and zero-atom events allows us to extract Pp;;, which is summarized in table 5.1. Since the
equations of our simple model are not independent, the occurrences of the two-, one-, and zero-atom
events result in the same anti-bunching probability P;,;. However, each case has a different sensitivity on
the anti-bunching probability P;;; which manifests in different confidence intervals. We will investigate
this sensitivity in more detail in the following section. Nevertheless, according to our simple model we
obtain a 5.8 o (standard deviation) decreased anti-bunching probability P;,; which can only be caused
by indistinguishable particles. Using equation (5.3), the HOM interference measurement also enables
us to extract the single atom ground state probability ngD yielding ngD = (67 £ 6) %, which is in good
agreement with the results discussed in section 2.5.2. In fact, modern photonic experiments often use the
Hong-Ou-Mandel interference to quantify the indistinguishability of their single photon source [36—39].

5.2.1 Monte Carlo Analysis of the Atomic Hong-Ou-Mandel Experiment

So far, we have excluded all events where atoms were found in lattice sites other than the two target ones.
While this was convenient to develop the simple model, it is, strictly speaking, not correct since we might
create artificial false positive of false negative events, when interpreting the measurement data using our
simple model. For example, it is possible that we did not flip the spin of the left atom, and hence the two
atoms would never meet at the same lattice site. In some of these cases, additionally, the left atom gets
lost, which leads to a one atom event. This example, therefore, represents a false negative event when
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Figure 5.5: (a) Relative occurrences of all nine distinct cases, obtained from 277 events. The different cases are
defined in appendix section C. The blue, grey, and green bars correspond to the two-, one-, and zero-atom events,
respectively. Errors are estimated using the Clopper-Pearson method (@ = 0.32). The solid red line is the result
from a least squares fit of generated Monte Carlo events to the measured ones with ngD = 67 % and the dashed
red line represents Monte Carlo data obtained from fully distinguishable particles (ngD = 0%). (b) Study of the
sensitivity of the two-, one-, and zero-atom events in dependency of the single atom ground state probability ngD.
The colored areas represent the 68 % confidence interval of the two-, one-, and zero-atom events displayed in (a).

interpreting the measurement data using our simple model. Furthermore, the events we have discarded
so far contain valuable information on the experimental parameters and it would be wasteful to simply
neglect this information. In fact, we can identify five additional distinct cases for these events, the details
of which are given in the appendix section C. The distribution we obtain after separating our 277 events
into all nine distinct cases is displayed in figure 5.5(a).

To rigorously analyze the distribution depicted figure 5.5(a) we resort to a Monte Carlo analysis instead
of extending our simple model to a more complex one. For this purpose we devised a Monte Carlo
simulation, which mimics the experimental sequence outlined in figure 5.4. The input parameters of this
Monte Carlo simulation are (a) the single atom ground state probability ngD, (b) the uncorrelated survival
probability S, (c) the light-assisted collisions branching ratio Py ac, (d) the probability to address the left
atom, (e) the probability to accidentally address the right atom, and (f) the probability to successfully
reconstruct the position of the atoms. By performing a non-linear least squares fit of the generated
Monte Carlo events — separated into the nine distinct cases, see appendix section C — to the measured
ones, we can extract the underlying experimental parameters, which are summarized in table 5.2. The
resulting event distribution is further indicated by the solid red horizontal lines in figure 5.5(a), which
all agree remarkably well with the measured ones. In addition, the extracted values of the uncorrelated
survival probability S and the light-assisted collision branching ratio P ac agree within one standard
deviation with the independently measurement ones. Furthermore, the Monte Carlo simulation allows
us to gain more insight on the sensitivity of the two-, one- and zero-atom events. For this purpose, the
relative occurrence of the two-, one- and zero-atom events as a function of the single atom ground state
probability ngD are displayed in figure 5.5(b).

While the Monte Carlo simulation reproduces the measured distribution perfectly, the obtained
confidence intervals of the non-linear least squares fit are not representative. The employed fit routine
extracts the confidence intervals from local deviations of the function (in our case the Monte Carlo
simulation) without properly accounting for an experimental uncertainty of the function. However, we
can extract the confidence intervals using the so-called bootstrapping method [354]. For this purpose,
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Table 5.2: Result from fitting the Monte Carlo generated events to the measured distribution displayed in figure 5.5
and the bootstrapping analysis. We have additionally performed a global non-linear least squares fit with 40
randomized starting parameters to ensure a local minimum (data not shown).

Fit Bootstrapping Independent measurement

(a) Single atom ground state probability n3° (67 +2) % (69 +9)%

(b) Uncorrelated survival probability S B3 +£1)% 84 +4)% (84 +1)% see sec. 5.2
(c) Light-assisted collisions Ppac 68 £2)% 68 £10)% (71 £5)% see sec.3.34
(d) Right atom addressing probability (76 £+ 1) % (76 =£3)%

(e) Left atom addressing probability @B +£D)% 7 £2)%

(f) Successful position reconstruction 89 £2)% 89 +4)%

we resample our 277 measured events into 1500 bootstrap samples which each contain 277 events.
Performing a non-linear least squares fit with each one of them gives us a statistic distribution for
each parameter. From the spread of these distributions we can then determine the 68 % confidence
intervals, which are summarized in table 5.2. The bootstrapping method is in general applicable as long
as the measured distribution accurately represents the true underlying distribution, which is a justified
assumption for our 277 events. Using equation (5.3) we can finally extract the anti-bunching probability
yielding Py, = (27 £ 6) %, which corresponds to a 4.1 o (standard deviation) discrepancy between our
measurement and the prediction using distinguishable particles.

5.2.2 Outlook: Further Enhancing the Hong-Ou-Mandel Signature

In the preceding chapter we have discussed our atomic Hong-Ou-Mandel experiment and obtained a
signature of the two-particle interference with a statistical significance of 4 . Furthermore, we have dis-
cussed that the anti-bunching probability of the experiment is only determined by the indistinguishability
of the particles, which in our case is given by the 3D vibrational ground state probability. Following
the discussion of section 2.5.2, it is feasible to reach 3D vibrational ground state probabilities of up
to 97 % with the experimental apparatus at hand, which in turn leads to an anti-bunching rate of only
3 %. Additionally, a higher 3D vibrational ground state occupation should also significantly boost the
coherence time leading to an improved spin-flip success rate, when addressing individual atoms (see
sec. 2.5.1). The HOM results presented in this thesis also reflect a rather low uncorrelated survival
probability of individual atoms. However, we expect to reach S = 99 % by adjusting the cooling sequence
employed to achieve 3D vibrational ground state cooling (see fig. 2.31) and further by exchanging the
arbitrary waveform generator controlling the optical lattice depth, which causes unnecessarily long hold
times before executing the experimental sequence depicted in figure 5.4. These improvements combined
will allow us to measure the signature of the two-particle interference with an enhanced significance.
Additionally we plan to incorporate two changes to the experimental sequence outlined in figure 5.4:
(a) Utilizing our capability to create state-dependent vibrational excitations (see sec. 5.1.1) allows to
controllably make two indistinguishable atoms distinguishable again. This tool enables us to create a
reference measurement for our HOM experiment, without resorting to a Monte Carlo analysis. (b) It is a
bit unsatisfying that we can only directly observe the anti-bunched state, whereas in the case where the
atoms are bunched we need to extract the information indirectly through the one- and zero-atom events.
In principle it is possible to split atoms located in the same lattice site by exploiting a controllable phase
shift induced by coherent cold collisions. However, this technique is experimentally rather demanding.
Instead, we can also make use of a statistical method — namely, our quantum walks — to split the bunched
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pair of atoms: conducting a three step quantum walk already reduces the probability of the two atoms
being in the same lattice site from 1 to 3/8. In fact, utilizing our newly developed versatile digital
frequency synthesizer [106] allows us to directly incorporate this protocol into the experimental sequence
of our atomic HOM experiment depicted in figure 5.4. A similar approach was recently demonstrated
using tunneling instead of discrete time quantum walks [355].
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Outlook

His thesis presents a novel concept of state-dependent transport, which gives us an unprecedented
control over the position of individual atoms in optical lattices. This control lies at the heart
of the experimental violation of the Leggett Garg inequality (see chap. 3), our bottom-up
approach of generating arbitrary low-entropy states with neutral atoms (see chap. 4), and the

Hong-Ou-Mandel interference with massive particles (see chap. 5).

Furthermore, parts of this thesis were devoted to develop several experimental tools and techniques:
Three dimensional ground state cooling of single atoms which are trapped in the combined potential of
the polarization-synthesized optical lattice and the blue-detuned hollow dipole potential (see sec. 2.5).
An automated feedback-based experimental control system, which rearranges individual atoms into
predefined, ordered distributions (see sec. 3.3.2). Interaction free — ideal negative — measurements, which
entangle the position of atoms with their internal state (see sec. 4.2). A high-NA (0.92) objective lens
achieving a diffraction limited resolution of 460 nm (see sec. 2.2.4). And an improved super-resolution
algorithm, which resolves the position of individual atoms in small clusters at high filling factors, even
when each lattice site is occupied (see sec. 2.2.3).

Throughout this thesis I have discussed several ideas how to extend the status quo of our research. In
the following paragraphs I will recapitulate some of these and, further, give an outlook on prospective
experiments, which become feasible with the newly developed tools and techniques.

Optimal Control Theory and Split Step Quantum Walks: At the end of chapter 3 we introduced
quantum optimal control theory as a tool to improve the transport operations carried out with our
polarization-synthesized optical lattices. We concluded that using these optimized transport operations, it
becomes attainable to transport atoms significantly faster over greater distances, while these operations
are simultaneously also more robust against deviations of experimental parameters. At the current
stage we are implementing the newly developed versatile digital frequency synthesizer [106] into the
electro-optical setup of our polarization-synthesized optical lattice (see sec. 3.2.1). With this device in
place we can put the optimal control transport operations to the test.

While a proof of principle experiment attesting the predominance of quantum optimal control is
interesting in itself, these ramps are crucial for all upcoming experiments which rely on coherent
interference of atom trajectories. For example, they find application in studying the topological properties
of discrete time quantum walks (DTQWs) [49, 356, 357]. To reveal the nontrivial topological character
of DTQWs we need to modify the iterative walk protocol introduced in section 3.4.1. Instead of shifting
the |T) and ||) potential at the same time, in a so-called split step DTQW, we split both the coin and the
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Figure 6.1: Preliminary images of single atoms trapped in a 3D optical lattice, obtained with the high-NA objective
lens. (a) Image of several atoms distributed in the 3D optical lattice. Atoms trapped at different vertical layers
appear as rings. (b) A pair of atoms in neighboring lattice sites. Courtesy of Stefan Brakhane [149]

shift operation [356]:
w=stc®)sTc®), 6.1)

where C(6) is the coin operator and S /! the state dependent shift operator which translates the corres-
ponding |T) /|l) potential. In fact, without our new polarization-synthesized optical lattices such an
independent translation of the two potentials would not be possible. Topologically protected edge states
of the split step DTQW can be observed by realizing spatially distinct coin angles [49]. While this may be
rather intricate with the experimental apparatus at hand, the high-NA objective lens of the new apparatus
makes this straightforward [49]. Nevertheless, even without distinct topological domains we can unveil
some of the topological properties of DTQWs. For this purpose we further modify the split step DTQW
protocol and make use of the ideal negative measurement we introduced in chapter 4:

R=Cx/2) R'C(-r/2), (6.2)

where R! is the ideal negative measurement which removes all atoms in |T). Iteratively repeating this
protocol and keeping track of the exact lattice site at which the atoms are removed allows us to extract
the average position at which an atom is removed from the walk. It can be shown that the average
removal position — after sufficient iterations — is always an integer number which represents the sum of
the topological invariants of a split step quantum walk as defined in Groh et al. [49].

Two-Dimensional State-Dependent Transport and Topology:  The construction of the next
generation experimental apparatus, which utilizes the high-NA objective lens (see sec. 2.2.4) and a
two-dimensional polarization-synthesized optical lattice, is nearly completed. The experimental details
of this apparatus can be found in Brakhane [149]. Figure 6.1 represents preliminary results showing
the fluorescence image of single atoms trapped in a 3D optical lattice. The scheme to implement spin-
dependent discrete shift operations in a two-dimensional optical lattice is described in a recent publication
by our group [49]. Two-dimensional state-dependent transport allows us to directly implement the sorting
algorithm we introduced in sec. 3.3.3 with the prospect of creating low-entropy states with more than
one thousand atoms in a bottom-up approach. Yet, this is merely the beginning. The capabilities of
the new experimental apparatus open a variety of interesting physical phenomena that can be studied.
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For example, a recent publication by Groh et al. [49] describes how one can realize spatial boundaries
between distinct topological phases and observe the emerging topologically protected edge states using
two-dimensional quantum walks. Furthermore, Muhammad Sajid and Andrea Alberti in collaboration
with Reinhard Werner with are currently investigating how one can realize synthetic magnetic fields by
utilizing position- and state-dependent AC-Stark shifts [358].

Contact-Free Entanglement of Indistinguishable Particles: When we think about entanglement
of massive particles, we typically have a picture in mind where the particles interact in a certain region
in space and time. However, the Hong-Ou-Mandel interference already hints that entanglement per
se does not require interaction. In fact, using photons it was demonstrated that it is possible to realize
a Hong-Ou-Mandel two particle interference, despite the fact that the photons never “meet” in the
beamsplitter [359]. Recently, Andrea Alberti and Dieter Meschede in collaboration with Christian Roos
and Hartmut Héiffner devised a new two-particle interferometer scheme, which demonstrates that two
particles both prepared and detected at separate places, can be entangled [50]. The particular symmetry
of the proposed scheme makes the interferometer intrinsically robust against all typical decoherence
sources like spin-dependent as well as spin-independent potential gradients. With the 3D vibrational
ground state cooling and our polarization-synthesized optical lattice, it is within reach to test this scheme
with the experimental apparatus at hand.

Towards a One-Million-Operation Quantum Cellular Automaton: This thesis demonstrates the
potential of polarization-synthesized optical lattices for future experiments. In particular, the capability
to precisely rearrange individual atoms over large distances in a few microseconds, has interesting
applications in quantum information processing [110, 256]. However, throughout this thesis it has also
become apparent that reaching the grand goal of building a universal quantum computer using alkali
atoms in state-dependent optical lattices may not be conceivable. Relying on alkali atoms, state-dependent
optical potentials can only be realized by choosing a wavelength which is in between two excited P
orbitals. This, in turn, leads to comparably high off-resonant scattering rates (see sec. 2.4.1), which
correspondingly set a hard boundary on the time where we can use our qubit states, before they loose
their information to the environment. For the experimental apparatus at hand, after only 1 ms already 1 %
of the information stored in the qubits is lost. In principle one can extend the qubit lifetime by reducing
the optical potential, however, this simultaneously slows down our transport operations (see sec. 3.4.2),
which does not solve our problem either. This brings us back to the discussion at the end of section 2.1.3:
the level structure of group III atoms posses the particularity of an inverse energy level structure, which
is illustrated for Indium in figure 6.2. The ground state P orbital enables us to realize far off-resonant
state-dependent optical potentials, which are opposite compared to their cesium counterpart: atoms with
my = —1/2 are attracted only by o polarized light, whereas atoms with m; = +1/2 are attracted by o=~
polarized light. We estimate, that it is conceivable to reach longitudinal trapping frequencies of up to
1 MHz and a scattering rate of only 0.5 Hz using a 532 nm laser source with an output power of 5 W [360].
The challenge with indium lies in the development of technologies, which are standard tools for cesium,
e.g. creating a magneto-optical trap. In previous work, our group demonstrated efficient sub-Doppler
cooling of indium [361], which at the time, was limited by the available laser power. However, with recent
developments in semiconductor laser diodes, magneto-optical trapping of indium becomes feasible. This
would be an important step and should naturally lead to trapping of indium atoms in a far off-resonant
optical lattice.
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Figure 6.2: Ground state and first excited level of indium. Due to the inverse level structure it is possible to create
far off-resonant state-dependent optical potentials: atoms with m; = —1/2 are attracted only by o™ polarized light,
whereas atoms with m; = +1/2 are attracted by o~ polarized light.

Lastly: whether we call it the second [8, 362] or even the third quantum revolution [363], one thing
is beyond doubt: it is a marvelous time for quantum optics, so let us see what we can achieve with our
combined effort.
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APPENDIX A

Error Propagation Using Monte Carlo Samples

Error analysis and error propagation is a central aspect experimental physics. In most cases, when
correlations between parameters can be neglected, error propagation is performed by using the variance
method [364] assuming Gaussian distributed parameters x with a 1o spread of o . This method works
well for linear functions or functions that can well be approximated by a linear function within the range
of the parameters and their errors. However, this method breaks down for non linear functions, which
will be demonstrated in the following. Furthermore, the variance method is also limited to Gaussian
distributed parameters, which for instance makes it impossible to combine the errors from binomial a
distributed parameter with a Gaussian distributed parameter. For this purpose Stefan Brakhane and myself
developed a Matlab [109] toolbox which performs the error propagation with Monte Carlo generated
parameter values to generate a confidence interval even for arbitrarily distributed parameters. The toolbox
consists of two parts: (a) generation of Monte Carlo samples and (b) propagation of the generated samples
using an analytic function and producing the corresponding function value distribution. The confidence
interval (CI) for a confidence threshold of @ = 1 — 0.68 (in case of a 68% CI) is generated by integrating
the function value distribution from +oo until @/2 is reached. The resulting interval contains then 68% of
the function value distribution, whereas the remaining 32% are equally distributed to the left and right.
Unless explicitly stated differently, all error propagations presented in this thesis are performed using
this toolbox for a confidence interval of 68%. In a lot of cases the resulting function value distribution
is symmetric, in which the Monte Carlo CI method reproduces exactly the 10 error from the variance
method. In the following I will give list a few examples to highlight the differences to the variance
method.

A.1 Example 1: Linear Function (Symmetric Cl)

Let us assume we have the simple linear function f(a, b) = a + b with the Gaussian distributed parameters
a =2.0+0.2 (MC generated parameter distribution exemplarily shown in fig. A.1(a)) and » = 0.5 £ 0.2.
It is straight forward to calculate the error using the variance method:

2 2
o= \/(%o'a) +(%ab) =0.28. (A1)

Hence, we obtain f = 2.50 + 0.28. To compare this result to the Matlab Monte Carlo error propagation
method we run the following code:
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Figure A.1: (a) Histogram of generated Monte Carlo samples for a Gaussian distributed parameter a = 2.0 = 0.2;
(b) Histogram of the generated MC function values of f(a,b) =a + b fora =2.0+0.2 and b = 0.5 = 0.2. The red
solid curve shows the result from the variance method, the vertical dashed black line represents the median of the
function values

A = generateMCparameters(’gaussian’,[2,0.2]);

B = generatelMCparameters(’gaussian’,[0.5,0.2]);

paramMatrix = [A;B];

funToProp = @(x) x(1)+x(2);

[funValue, funCI, funSamples] = propagateErrorWithMC(funToProp, paramMatrix);

This gives us a median value of f = 2.50 and a 68% CI [2.22, 2.78], which agrees perfectly with the
variance method. The histogram in figure A.1(b) shows the resulting function value distribution, where
the green shaded bars represent the values which lie within the 68% CI and the vertical dashed black line
represents the median of the function values. The red solid line represents the result from the variance
method and shows the perfect agreement of the two methods.

A.2 Example 2: Non Linear Function (Asymmetric Cl)

The previous example shows that the Monte Carlo error propagation method can nicely reproduce the 1o
error from the variance method, therefore let us now consider a non linear function f(a, b) = a/b with
the same Gaussian distributed parameters a = 2.0 £ 0.2 and b = 0.5 + 0.2. Using the variance method
we obtain f = 4.00 £+ 0.69, while the following code produces the Matlab Monte Carlo CI:

A = generateMCparameters(’gaussian’,[2,0.2]);
B = generatelMCparameters(’gaussian’,[0.5,0.2]);
paramMatrix = [A;B];
funToProp = @(x) x(1)./x(2);
[funValue, funCI, funSamples] = propagateErrorWithMC(funToProp, paramMatrix);
[funValue, funCI, funSamples] = propagateErrorWithMC(funToProp,
paramMatrix, 'method’, 'maximum’);

The histogram in figure A.2(a) shows the resulting function value distribution, which shows an asymmetric
distribution and a clear distinction from the red solid line representing the result from the variance method.
The corresponding median function value is f = 3.97 with a 68% CI [2.79, 6.58]. This example shows
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A.3 Example 3: Combining Gaussian and Binomial Distributions
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Figure A.2

nicely that the variance method cannot be used in general for all functions, while the Monte Carlo
error propagation method allows an exact determination of the CI. It is noteworthy that in case of an
asymmetric function value distribution the exact definition of a function value f becomes unclear. The
vertical dashed black line in figure A.2(a) shows the median of the distribution which agrees well with
the value one obtains from the variance method and represents the on average measured value. However,
this value does no longer correspond to the most likely measured value (maximum of the function value
distribution). The developed Matlab toolbox allows to specify the method to generate the function value.
The vertical dashed black line in figure A.2(a) shows the result of the default median method, while
the vertical dashed black line in figure A.2(b) indicates the maximum if the function value distribution,
which is obtained from by fitting a polynomial to the function value distribution (cyan solid line).

A.3 Example 3: Combining Gaussian and Binomial Distributions

This following example shows that the Monte Carlo error propagation method also allows to combine
parameters which are not Gaussian distributed. Let us assume we have the following function f(a, b) =
a - b, where a is again a Gaussian distributed error with a = 2.000 + 0.035, however, b comes from a
survival measurement of single atoms where 18 out of 20 atoms survived. Therefore, we need to generate
Monte Carlo samples which follow a binomial distribution with n = 18 and k& = 20 (see fig. A.3(a)).
While the variance method is not capable to handle these two distributions without modifications, the
error propagation using the Monte Carlo method is straight forward:

A = generateMCparameters(’gaussian’,[2,0.035], plot’,true);

B = generatelMCparameters(’binomial’, [20,18], plot’,true);

paramMatrix = [A;B];

funToProp = @(x) x(1).*x(2);

[funValue, funCI, funSamples] = propagateErrorWithMC(funToProp, paramMatrix);

In fact, the Monte Carlo method can be used for arbitrary distributions. The histogram in figure A.3(b)
shows the resulting function value distribution. The parameters a and b have been chosen such that
the remnants of the binomial distribution are still visible. For the given parameter values the Monte
Carlo method generates a function value f = 1.81 with a 68% CI [1.67, 1.93]. It is noteworthy that the
MC error propagation method does not converge to the Clopper Pearson CI [365] in case the error of a
becomes significantly smaller. The CIs presented in this thesis, in cases where the error is either purely
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binomial or all other error sources are orders of magnitude smaller, are all obtained using the Clopper
Pearson method.
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APPENDIX B

Useful Calculations in Quantum Optics

B.1 Electric Field, Intensity and Laser Power

In calculations presented in this thesis, where the light from a monochromatic laser source with angular
frequency w can be modeled by a classical plane wave, it takes the following form:
E = &y cos(wi) (B.1)

gEO(eikX’e—iwt + e—ikfeiwt) , (B.2)

o = My

where Ej is the amplitude of the electric field and & the polarization unit vector. The decomposition into
a positive- and a negative-rotating component (¢~'“" and ¢'“") is often advantageous in calculations.

The intensity from the electric field of a single laser beam given by:

I= ? B2, (B.3)

where ¢ is the vacuum permittivity and c the speed of light.

In experiments the intensity of laser beams is typically only indirectly accessible through the power
(measured with a power meter) and waist of the corresponding laser beam. The relations between
intensity, power, and waist, which are relevant for different calculations within this thesis, are summarized
in figure B.1. In case of a standing wave formed by two linear polarized counter propagating Gaussian
laser beams we can, hence, express the squared amplitude of the electric field ES by the laser power
(Prota1) and the waist (wy):

_ ﬁ _ 8 Piotal

CeEp  ce ﬂw%

Ej (B.4)
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Figure B.1: Relevant laser intensity, power, and waist relations used in this thesis. The intensity is always given
for an atom (blue sphere) which is located at the focus of the beam. The quantization axis is parallel to the laser
axis and the polarization of all involved beams is assumed vertical. (a) Running wave with transversal Gaussian
profile (waist = wy), (b) standing wave of two counter propagating laser beams with transversal gaussian profile
(waist = wy), (c) running wave with flat-top profile (radius = ry). The blue dashed curve in the intensity profile
insets (b) and (c) shows a comparison to the single gaussian beam intensity profile
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B.2 Different Mathematical Descriptions of Light Polarization

B.2 Different Mathematical Descriptions of Light Polarization

B.2.1 Cartesian and Spherical Coordinates

Any homogeneously polarized laser beam which propagates in free space (homogeneous, isotropic, and
non-attenuating) can be described by the following polarization unit vector & in Cartesian coordinates:

el
g= [e"%J, (B.5)
0

where for simplicity the light propagation direction is chosen along the z axis. In atomic physics it is
often of most interest to determine which type of transition (o*, 7, and o) the polarization drives for an
atom whose spin is oriented along a given quantization axis. Therefore the laser light polarization needs
to be decomposed into the different components depending on the orientation of the quantization axis. In
the following we assume the quantization axis of the atom to be oriented along the z axis. The following
matrix converts the polarization vector from Cartesian to spherical coordinates:

1 i

cart E % 0

M =| 0 0 1, (B.6)
Vv v

such that the resulting polarization unit vector corresponds to:

0_+
gopher — [ nl. (B.7)
g

B.2.2 Jones Vector Representation

Since the polarization, in case of a homogeneously polarized laser beam in free space is always perpen-
dicular to the propagation axis we can rewrite equation (B.5):

R el¢x
EJones = (ei¢y) . (B.8)

The resulting two component vector is called Jones vector. Hence, a vertically linear polarized laser beam
T T
ist described by the Jones vector (0 1) and a right-handed circular polarized one by 1/ V2 (1 i) .

B.2.3 The Poincaré Sphere and Stokes Parameter Representation

The Poincaré sphere is a useful tool to visualize different polarization states and shares a strong similarity
with the Blochs sphere (see fig. B.2(a)). All linear polarizations lay on the equator of the sphere, whereas a
right/left-handed polarization is represented by the north/south pole. It is noteworthy that two orthogonal
polarizations (e.g. vertical and horizontal) have a relative angle of 180° and not 90° to each other. Any
other elliptically polarized laser beam is oriented on the sphere. Besides pure polarizations it is also
possible to display partially polarized beams by a reduction of the vector length (degree of polarization).
A vector on the poincare sphere, given in spherical coordinates, can also be expressed by the Stokes

143



Appendix B Useful Calculations in Quantum Optics

parameters, another convention used to describe polarization, in the following way:

S1=1 (B.9)
S» = IDOP cos(2¢) cos(2y) (B.10)
S3 = IDOP sin(2¢) cos(2y) B.1D)
S4 =1DOP sin(2y), (B.12)

where 1 DOP is the radial distance, 2y the azimuthal angle, and y the polar angle from the equator which
represent the spherical coordinates (see also fig. B.2(a)), I the total intensity of the electric field, and
DOP the degree of polarization. The Stokes parameters can also be obtained directly from the electric
field. If we assume again a laser beam which propagates in free space along the z direction the stokes
parameter that describe its polarization are given by [366]:

S1= S Eyes + 5,)) (B.13)
S, = ?Eg(gxs; — 5,8) (B.14)
$3= SLENe.s) + 8:)) (B.15)
S4= S Ejiee; - 553, (B.16)

A concrete example is given in figure B.2(b) for a vertical linear polarization (triangle), horizontal
linear polarization (square), and right handed circular polarization (circle). Depending on the concrete
application it might be useful to either express the polarization of a laser beam in terms of the Jones
vector or through the Stokes parameters. For both, Jones and Stokes representation, there exist a set
of matrix operations [366] (Jones or Mueller matrices), which mathematically describe the effect of
e.g. wave plates or polarizers. The relation to the electrical field also allows to convert between the two
conventions.

B.3 Wigner-Eckart Theorem, Wigner Three and Six J Symbols, and
Their Application

When calculating matrix elements of tensor operators, the Wigner-Eckart theorem is an extremely useful
relation, which allows to factor out the angular part of the matrix element. This element can then be
expressed in terms of a Clebsch-Gordan coefficient. Let us assume we have an angular-momentum
state | jm), where a is a quantum number without angular dependence, and we want to calculate the
following matrix element of a tensor-operator 7. The Wigner-Eckart theorem states then:

(@ jm TSN 7 m'y = (1% jIT® e jY Gmlj m'skq) . (B.17)

Here, we assume spherical coordinates, such that the labeling index g, which goes from —1...1,
represents the o, &, or o+ component (see also eq. (B.7)).

Any light matter interaction involves calculating matrix elements of the dipole operator d, which
is of rank k£ = 1. For instance, using the Wigner-Eckert theorem we can calculate the strength of the
interaction between two hyperfine levels of cesiums which are coupled by the dipole operator through a
near resonant laser beam:
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Figure B.2: (a) Poincaré sphere with three exemplarily chosen polarization states (triangle, square, circle); (b)
corresponding Stokes vector for a vertical linear polarization (triangle), horizontal linear polarization (square), and
right handed circular polarization (circle).

(F mgdy |F" myy = (F||d||F") (F melF" 1m0 q) (B.18)
= (NN VFI T YF mplF 1l q) (B.19)

where F is the magnitude of the total atomic angular momentum (hyperfine structure), mp the
projection on the total angular momentum axis, J the magnitude of the total electron angular mo-
mentum (fine structure), and / the nuclear spin (for cesium / = 7/2). Hence, the matrix element is the
product of two coefficients and the reduced matrix element (J||e,d,||J’), which only depends on the
quantum number J. The numerical value of the reduced matrix elements for the cesium D2 and D1
transitions ((J = 1/2| |J| [/ =3/2)and (J = 1/2] |cf| |J” = 1/2)) can be calculated from their measured
lifetimes [184]. The Clebsch-Gordan coefficient (F mpg|F’ 1 m}, ) can be directly calculated using the
Wigner-3j symbols:

(Fmp|F 1myq) = (=D)F ~1mr \RF 4] (F, bF ) (B.20)
mrp q mp
whereas the other coefficient can be similarly obtained using the Wigner-6j symbols:
P F-14J+1+1 J J 1
JI1FJTFYy=(-1) VQF + DH(2J + 1) FoFE oIl (B.21)

Using these relations one can for example easily calculate the coupling strength between the ground state
|FF = 4mp = 4) and the excited state |F’ = Sm}, = 5) for o polarized light (¢ = —1) resonant with the
D2 transition:

(F=4mp =4ld_|[F' =5m} =5) = \/g(J: 17211d\|J =3/2) . (B.22)
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B.4 Calculation of Scattering Rates Using the Kramers-Heisenberg
Formula

Scattering of light consists in general of two processes: (a) the absorption of an incoming photon with
energy w and (b) the emission of the scattered photon with energy ws.. Hence, they are processes
of second order radiative transitions, which in contrary to first order transitions go through a virtual
intermediate state. The first and second order scattering rate can be described by the generalized Fermi’s
golden rule [74]:

L= 2 S it H fnitiany + Y 7 T D A i) (it — ). (B.23)
fimal it Winitial — Wvirt

Here the initial state of the system (atom and photon) is denoted as |initial) and correspondingly its final
state by |final). The first term of the absolute value describes direct (first order) transitions from the initial
to the final state whereas the second one corresponds to the second order scattering events. The delta
function at the end of equation (B.23) ensures that the energy is conserved after the entire process. The
energy of the virtual intermediate state, however, is not restricted. Since we are only interested in second
order transitions we can neglect the first term in equation (B.23). It is important to note that the sum over
all virtual intermediate states is within the absolute value, while the sum over the final states is outside.
The reason comes directly from quantum mechanics, since all transitions through intermediate states that
lead to the same final state can interfere constructively and destructively, while the final state is measured
by the environment and, hence, no interference between different final states is possible.

In our explicit case we want to calculate the total scattering rate of a cesium atom depending on its
initial hyperfine state |F' mp), therefore, we need to replace the sum over all final states by one over all
accessible final hyperfine states:

4 Flinal
Ditinall — > > (Finat, M fnall - (B.24)
final Ffina=3 mF,ﬁnal:_Fﬁnal

Furthermore, the scattered photon can be emitted into any spatial mode k with a o, &, or o+ polarization.
Therefore we have to extend the sum from the precious equation to:

thal
D (finall — Z Z Z D, (Fona, MF il - (B.25)
final Gfinal==1 Fina1=3 mF, final=—Ffinal

The sum over all spatial modes k is a bit unpractical and can be replaced in general by an integration
over the mode densities (number of modes per unit volume):

Vv W2
Zk] — 5 f dQ f dwscc—s, (B.26)

where dQ is the integration of the solid angle. In our specific application we are interested in the
scattering rate of a single cesium atom, which is trapped in an optical lattice inside a vacuum chamber.
This means that there is no preferred spatial mode for the emission (the story would be different for an
atom trapped in an optical cavity). Nevertheless, the emission is not isotropic in wavevector space, owing
to the polarization of the emitted photon, as we will see in the following. Therefore we cannot directly
compute the integral of the solid angle, while the integration over the energy of the scattered photon dws.

146



B.4 Calculation of Scattering Rates Using the Kramers-Heisenberg Formula

is straight forward thanks to the delta function in equation (B.23).

Following the same logic, the sum over all virtual intermediate states can be expressed by a sum over
all possible intermediate hyperfine states. This means that we also have to sum over the two components
of the exited state fine-structure doublet (D1 J’ = 1/2 and D2 J’ = 3/2 transition):

3/2 Jyiee+1 Fuyire
Dt — > > (P M, vind (B.27)
virt Jir=1/2 Fpina=Jyire—=1| mg, virt==Fyirt

The selection rules for dipole transitions simplify the sum over all states significantly, since only some
contributions are allowed:

AF =0, £1, g=Amp =0, £1, if Amp =0 - AF = 1. (B.28)

The remaining missing ingredient is the interaction Hamiltonian. In our example we want to calculate
the rate of photons which a single trapped cesium atom scatterers from a laser beam, this allows us to
treat the absorption with a semiclassical approach, while we require the full second quantization for
emission of the scattered photon. This gives us the following interaction Hamiltonian:

7_(int = 7_(absorption + 7—{emission (B29)
- 2
= d - E |Fyirt, ME virt) (Finitial, MF, initiai|
fiwge T —i N ki (B3O)
+ j gsc We (a(k) e e sl a' (k) e’ xetwsct) |Fﬁnal’ Mg, ﬁnal> <Fvirta Mg, Virt| B
0

where d is the dipole operator, E the electric field as defined in equation (B.2), & the polarization
vector of the emitted photon, V the volume in which the photon is emitted, and a' (k) (a(k)) the creation
(annihilation) operator of a single photon.

Inserting the interaction Hamiltonian in the scattering rate given in equation (B.23) combined with the
replacements of the final and virtual intermediate sums we obtain the following total rate for a cesium
atom in its hyperfine state |Fipigal, MF, iniia1) Which scatters a photon from a laser beam with polarization

2 .
Elaser-

Flinal 3/2 Jvir+1 Flirt

%:mwiszdgi D 2 i 22 2

Feina=3 mF fina==Ffinal | Ginitiar=—1 Gfinar=—1 Jin=1/2 Fpna=|Svie=1| mF,vi==Fyirt
2
(Ffinal, ME, final| dggy [Fvires ME, vire) (Fyirt, ME, virtl gy [Finitial, MF, initial)

Mwse — Wvirt(Jyirts Fyirt)) ’
(B.31)

% = =
EDT, ginitial €5¢, gfinal

where in the simplification of the absorption matrix element we have made use of the rotating wave
approximation. The laser intensity can again be expressed in dependence of the laser power and the waist
of the beam as given in figure B.1, depending on the specific situation. The remaining matrix elements
can be directly calculated using the Wigner-Eckart theorem given on equation (B.19). Equation (B.31) is
typically referred to as Kramers-Heisenberg Formula.
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ApPeENDIX C

The Nine Distinct Atomic Hong-Ou-Mandel
Events

In the following we will introduce the nine distinct events, which can occur in our atomic Hong-Ou-
Mandel experiment. Dividing our 277 measured events into the different cases leads to the distribution,
which is displayed in figure 5.5 in section 5.2.1. To allow for the chance of not correctly reconstructing
the atoms’ positions in the final fluorescence image, all lattices sites given in the following are always
+1 lattice site. Furthermore, the lattice sites are defined as depicted in figure 5.4.

Paa

Pia

Poa

LA
PlA
RA
PIA

LA
P2A

RA
P2A

BA
P2A

is a two-atom event, where one atom is found at lattice site O and the other at 1.
is a one-atom event, where the single atom is found at lattice site O or at 1.

is a zero-atom event, where no atoms are found at all key locations (-20,-10,0,10,20,30). In case
we will find a single atom at a random position we will also count it as a zero atom event. During
the pair production measurements discussed in section 3.3.4, we noticed that it is possible that
some of the atoms, which are lost due to light assisted collisions, can get trapped again. However,
this event only occurs in less than 5 % of all zero-atom events.

is a one-atom event, where one atom is found at lattice site -20 site or at -10. This event is most
likely caused by not spin-flipping the left atom, while the right one is independently lost.

is a one-atom event, where one atom is found at lattice site 20 site or at 30. This event is most
likely caused by accidentally spin-flipping the right atom, while the left one is independently lost.

is a two-atom event, where one atom is found at lattice site -20 or -10 and the other at O or 10. This
event is most likely caused by not spin-flipping the left atom, such that the atoms never meet at
lattice site O.

is a two-atom event, where one atom is found at lattice site O or 10 and the other at 20 or 20. This
event is most likely caused by accidentally spin-flipping the right atom, such that the atoms never
meet at lattice site 0.

is a two-atom event, where one atom is found at lattice site -20 or -10 and the other at 20 or 20.
This event is most likely caused by not spin-flipping the left atom and simultaneously accidentally
spin-flipping the right atom, such that the atoms never meet at lattice site 0.

149



Appendix C The Nine Distinct Atomic Hong-Ou-Mandel Events

T
P2A

150

is a two-atom event, where both atom is found at lattice site O or both at 10. Please not that this
does not mean that the atoms are found in the exact same lattice site, instead it means that they are
e.g. at-1 and 0, or 10 and 11, since we allow for +1 lattice site in our detection. This event is most
likely caused by not correctly inferring the initial position of the two atoms, such that the atoms
never meet at lattice site 0.
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